A181749 The number of paths of a chess rook in a 4D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
1, 24, 6384, 2306904, 964948464, 439331916888, 211383647188320, 105734905550405400, 54434276297806242480, 28652982232251791825880, 15350736081585866511795024, 8343014042738696079671066904, 4588687856038215036178166258304
Offset: 0
Keywords
Examples
a(1) = 24 because there are 24 rook paths from (0..0) to (1..1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Crossrefs
Row d=4 of A181731.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1], ((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4 +3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2* a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6 -21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2 -6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6 +22263043023*n^5-55659442951*n^4+77029268163*n^3 -57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3) -5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2* (n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2 -278070*n^3+34983*n^4)*(n-1)^2)) end: seq(a(n), n=0..20); # Alois P. Heinz, Aug 31 2014
-
Mathematica
b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; a[n_] := b[Array[n&, 4]]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz in A181731 *)
Formula
Recursion: see Maple program. - Alois P. Heinz, Aug 31 2014
a(n) ~ 8 * 5^(4*n-1) / (3*sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 03 2014