cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181749 The number of paths of a chess rook in a 4D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).

Original entry on oeis.org

1, 24, 6384, 2306904, 964948464, 439331916888, 211383647188320, 105734905550405400, 54434276297806242480, 28652982232251791825880, 15350736081585866511795024, 8343014042738696079671066904, 4588687856038215036178166258304
Offset: 0

Views

Author

Manuel Kauers, Nov 16 2010

Keywords

Examples

			a(1) = 24 because there are 24 rook paths from (0..0) to (1..1).
		

Crossrefs

Row d=4 of A181731.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1],
          ((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4
          +3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2*
          a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6
          -21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2
          -6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6
          +22263043023*n^5-55659442951*n^4+77029268163*n^3
          -57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3)
          -5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2*
          (n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2
          -278070*n^3+34983*n^4)*(n-1)^2))
        end:
    seq(a(n), n=0..20); # Alois P. Heinz, Aug 31 2014
  • Mathematica
    b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]];
    a[n_] := b[Array[n&, 4]];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz in A181731 *)

Formula

Recursion: see Maple program. - Alois P. Heinz, Aug 31 2014
a(n) ~ 8 * 5^(4*n-1) / (3*sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 03 2014