cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181768 G.f.: (1/2)*(3 - sqrt((1-5*x)/(1-x))).

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191, 974427, 4302645, 19181100, 86211885, 390248055, 1777495635, 8140539950, 37463689775, 173164232965, 803539474345, 3741930523740, 17481709707825, 81912506777200, 384847173838501, 1812610804416698, 8556895079642921, 40480850291739165, 191884148712996795, 911225151259732188, 4334673398737025619, 20653004146207902678, 98551406393189773875
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2010

Keywords

Comments

Same as A007317 if the first 1 is omitted. Has several combinatorial interpretations so deserves its own entry.

Crossrefs

Cf. A007317.

Programs

  • Maple
    A181768 := n -> `if`(n=0, 1, JacobiP(n-1,1,-n-1/2,9)/n):
    seq(round(evalf(A181768(n),99)), n=0..33); # Peter Luschny, Sep 23 2014
  • Mathematica
    CoefficientList[Series[3/2-Sqrt[(1-5x)/(1-x)]/2,{x,0,40}],x] (* Harvey P. Dale, Jul 28 2013 *)
  • PARI
    x='x + O('x^50); Vec((1/2)*(3 - sqrt((1-5*x)/(1-x)))) \\ G. C. Greubel, Feb 12 2017

Formula

a(n) ~ 5^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) +2*(-3*n+4)*a(n-1) +5*(n-2)*a(n-2)=0. - R. J. Mathar, Aug 06 2013
a(n) = JacobiP(n-1,1,-n-1/2,9)/n for n>0. - Peter Luschny, Sep 23 2014
a(n) = 1 + Sum_{k=1..n-1} a(k) * a(n-k). - Ilya Gutkovskiy, Jul 01 2020