A181795 Numbers k such that the number of odd divisors of k is an odd divisor of k, and the number of even divisors of k is an even divisor of k.
4, 16, 36, 144, 256, 576, 900, 1764, 2304, 2500, 3600, 4356, 6084, 7056, 8100, 10000, 10404, 12996, 17424, 19044, 22500, 24336, 26244, 30276, 32400, 34596, 36864, 41616, 49284, 51984, 57600, 60516, 65536, 66564, 76176, 79524, 90000
Offset: 1
Keywords
Examples
a(3)=36 has 3 odd divisors (1, 3, and 9) and 6 even divisors (2, 4, 6, 12, 18, and 36). 3 and 6 are odd and even respectively, and both are divisors of 36.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..96 from Harvey P. Dale)
Crossrefs
Programs
-
Mathematica
ndQ[n_]:=Module[{d=Divisors[n],od,ev},od=Count[d,?OddQ];ev=Count[ d, ?EvenQ]; ev!=0&&OddQ[od]&&EvenQ[ev]&&Divisible[n,od]&&Divisible[ n, ev]]; Select[Range[100000],ndQ] (* Harvey P. Dale, Feb 24 2016 *)
-
PARI
isok(n) = my(nod = numdiv(n>>valuation(n, 2)), noe = if (n%2, 0, numdiv(n/2))); (nod % 2) && nod && !(n % nod) && !(noe % 2) && noe && !(n % noe); \\ Michel Marcus, Jan 14 2014
Extensions
More terms from Nathaniel Johnston, Nov 17 2010
Comments