cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181797 a(n) = n multiplied by the sum of its squarefree divisors (A048250(n)).

Original entry on oeis.org

1, 6, 12, 12, 30, 72, 56, 24, 36, 180, 132, 144, 182, 336, 360, 48, 306, 216, 380, 360, 672, 792, 552, 288, 150, 1092, 108, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 432, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 1080, 3312, 2256, 576, 392, 900
Offset: 1

Views

Author

Matthew Vandermast, Dec 05 2010

Keywords

Comments

Sum of reciprocals converges to Pi^2/6. The natural density of positive integers m such that A003557(m) = n equals 6/(a(n)*Pi^2).
If m is coprime to 6, a(3m) = a(4m).
Apparently the absolute values of the Dirichlet inverse of A000082. - R. J. Mathar, Mar 14 2011

Crossrefs

Programs

  • Maple
    A181797 := proc(n) local f; f := ifactors(n)[2] ;  mul( op(1,d)^op(2,d)*( op(1,d)+1),d=f) ; end proc: # R. J. Mathar, Dec 05 2010
  • Mathematica
    Table[n*Sum[d*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
  • PARI
    a(n)=n*sumdiv(n,d,d*moebius(d)^2)
  • Sage
    A181797 = lambda n: n * sum(d for d in divisors(n) if is_squarefree(d)) # D. S. McNeil, Dec 05 2010
    

Formula

a(n) = n*A048250(n). Multiplicative with a(p^e) = (p+1)*p^e.
Dirichlet g.f. zeta(s-1)*zeta(s-2)/zeta(2*s-4). - R. J. Mathar, Mar 14 2011
G.f.: x*f'(x), where f(x) = Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 10 2017
Sum_{k=1..n} a(k) ~ n^3 / 3. - Vaclav Kotesovec, Feb 02 2019
Sum_{k>=1} 1/a(k) = Pi^2/6. - Vaclav Kotesovec, Sep 19 2020

A181799 List of positive integers, ordered by asymptotic frequency of appearance in A003557; ties broken by listing smaller numbers first.

Original entry on oeis.org

1, 2, 3, 4, 8, 5, 9, 16, 7, 6, 32, 27, 11, 12, 25, 10, 13, 64, 18, 24, 17, 81, 14, 15, 20, 19, 128, 49, 36, 23, 48, 54, 21, 28, 40, 125, 256, 22, 72, 29, 50, 243, 31, 45, 26, 96, 108, 56, 37, 80, 121, 512, 33, 44, 35, 41, 144, 100, 34, 43, 162, 63, 30, 39, 52, 47, 38, 192, 98, 169
Offset: 1

Views

Author

Matthew Vandermast, Dec 05 2010

Keywords

Comments

A permutation of the natural numbers.
The natural density of positive integers m such that A003557(m) = a(n) equals 6/(A181798(n)*Pi^2). If m is coprime to 6, 3m and 4m appear in A003557 equally often.

Formula

The natural density of positive integers m such that A003557(m) = n equals 6/(A181797(n)*Pi^2). A181797(n) = n*A048250(n).
Showing 1-2 of 2 results.