A181818 Products of superprimorials (A006939).
1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 360, 384, 512, 576, 720, 768, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 11520, 12288, 13824, 16384, 17280, 18432, 20736, 23040, 24576, 27648, 32768
Offset: 1
Keywords
Examples
2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence. From _Gus Wiseman_, Aug 12 2020 (Start): The sequence of factorizations (which are unique) begins: 1 = empty product 2 = 2 4 = 2*2 8 = 2*2*2 12 = 12 16 = 2*2*2*2 24 = 2*12 32 = 2*2*2*2*2 48 = 2*2*12 64 = 2*2*2*2*2*2 96 = 2*2*2*12 128 = 2*2*2*2*2*2*2 144 = 12*12 192 = 2*2*2*2*12 256 = 2*2*2*2*2*2*2*2 (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763.
A001013 is the version for factorials.
A336426 is the complement.
A336496 is the version for superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A317829 counts factorizations of superprimorials.
Programs
-
Mathematica
Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* Gus Wiseman, Aug 12 2020 *)
-
PARI
firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); }; A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1))); isA181818(n) = A353518(n); \\ Antti Karttunen, Apr 28 2022
Comments