cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181848 Consider two consecutive primes {p,q} such that P=2p+q and Q=2q+p are both prime. Sequence gives lesser primes p.

Original entry on oeis.org

3, 5, 13, 59, 103, 113, 223, 241, 269, 337, 491, 773, 787, 823, 911, 919, 1571, 1637, 1723, 1879, 1949, 2089, 2423, 2521, 2753, 2953, 2971, 2999, 3011, 3137, 3361, 3571, 3739, 4231, 4363, 4663, 4909, 5791, 5903, 6221, 6359, 6793, 7043, 7507, 7873, 9323, 9403
Offset: 1

Views

Author

Zak Seidov, Aug 18 2012

Keywords

Comments

Note that Q-P=q-p and {P,Q} are not necessarily consecutive primes.

Examples

			a(1)=3 because p=3, q=5 and P=11 and Q=13 are both prime
a(3)=13 because p=13, q=17 and P=43 and Q=47 are both prime.
		

Crossrefs

Intersection of A173971 and A175914. - Zak Seidov, Mar 04 2016

Programs

  • Mathematica
    a=2;Reap[Do[b=Prime[n];If[PrimeQ[2*a+b]&&PrimeQ[2*b+a],Sow[a]];a=b,{n,2,200}]][[2,1]]
    Select[Partition[Prime[Range[1200]],2,1],AllTrue[{2 #[[1]]+#[[2]],2 #[[2]]+#[[1]]},PrimeQ]&][[;;,1]] (* Harvey P. Dale, Mar 24 2025 *)
  • PARI
    isok(p) = isprime(p) && (q=nextprime(p+1)) && isprime(p+2*q) && isprime(q+2*p); \\ Michel Marcus, Mar 05 2016