A181848 Consider two consecutive primes {p,q} such that P=2p+q and Q=2q+p are both prime. Sequence gives lesser primes p.
3, 5, 13, 59, 103, 113, 223, 241, 269, 337, 491, 773, 787, 823, 911, 919, 1571, 1637, 1723, 1879, 1949, 2089, 2423, 2521, 2753, 2953, 2971, 2999, 3011, 3137, 3361, 3571, 3739, 4231, 4363, 4663, 4909, 5791, 5903, 6221, 6359, 6793, 7043, 7507, 7873, 9323, 9403
Offset: 1
Keywords
Examples
a(1)=3 because p=3, q=5 and P=11 and Q=13 are both prime a(3)=13 because p=13, q=17 and P=43 and Q=47 are both prime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..3000
Crossrefs
Programs
-
Mathematica
a=2;Reap[Do[b=Prime[n];If[PrimeQ[2*a+b]&&PrimeQ[2*b+a],Sow[a]];a=b,{n,2,200}]][[2,1]] Select[Partition[Prime[Range[1200]],2,1],AllTrue[{2 #[[1]]+#[[2]],2 #[[2]]+#[[1]]},PrimeQ]&][[;;,1]] (* Harvey P. Dale, Mar 24 2025 *)
-
PARI
isok(p) = isprime(p) && (q=nextprime(p+1)) && isprime(p+2*q) && isprime(q+2*p); \\ Michel Marcus, Mar 05 2016
Comments