A181894 Sum of factors from A050376 in Fermi-Dirac representation of n.
0, 2, 3, 4, 5, 5, 7, 6, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 9, 25, 15, 12, 11, 29, 10, 31, 18, 14, 19, 12, 13, 37, 21, 16, 11, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 14, 16, 13, 22, 31, 59, 12, 61, 33, 16, 20, 18, 16, 67, 21, 26
Offset: 1
Keywords
Examples
For n = 54, the Fermi-Dirac representation is 54 = 2*3*9, then a(54) = 2+3+9 = 14.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a181894 1 = 0 a181894 n = sum $ a213925_row n -- Reinhard Zumkeller, Mar 20 2013
-
Mathematica
FermiDiracSum[n_] := Module[{e, ex, p, s}, If[n <= 1, 0, {p, e} = Transpose[FactorInteger[n]]; s = 0; Do[d = IntegerDigits[e[[i]], 2]; ex = DeleteCases[Reverse[2^Range[0, Length[d] - 1]] d, 0]; s = s + Total[p[[i]]^ex], {i, Length[e]}]; s]]; Table[FermiDiracSum[n], {n, 100}] (* T. D. Noe, Apr 05 2012 *)
-
PARI
a(n) = if(n == 1, 0, my(f = factor(n), p = f[, 1], e = f[, 2], s = 0, b); for(i = 1, #p, b = binary(e[i]); for(j = 0, #b-1, if(b[#b-j], s += p[i]^(2^j)))); s); \\ Amiram Eldar, May 02 2025
Comments