A181897 Triangle of refined rencontres numbers: T(n,k) is the number of permutations of n elements with cycle type k (k-th integer partition, defined by A194602).
1, 1, 1, 1, 3, 2, 1, 6, 8, 3, 6, 1, 10, 20, 15, 30, 20, 24, 1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120, 1, 21, 70, 105, 210, 420, 504, 105, 630, 280, 840, 210, 504, 420, 720, 1, 28, 112, 210, 420, 1120, 1344, 420, 2520, 1120, 3360, 1680, 4032
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 3, 2; 1, 6, 8, 3, 6; 1, 10, 20, 15, 30, 20, 24; 1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120; ...
Links
- Gregory Gerard Wojnar, Table of n, a(n) for n = 1..271
- Marc-Antoine Coppo and Bernard Candelpergher, Inverse binomial series and values of Arakawa-Kaneko zeta functions, Journal of Number Theory, (150) pp. 98-119, (2015). See p. 101.
- Bartlomiej Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables, arXiv:2108.13997 [math.CO], 2021. Mentions this sequence.
- Bartłomiej Pawelski, Counting and generating monotone Boolean functions, Doctoral Diss., Univ. Gdańsk, (Poland, 2024). See pp. 26, 34.
- Tilman Piesk, Permutations by cycle type (Wikiversity article)
- Gregory Gerard Wojnar, Comments on A181897, Sep 29 2020.
Crossrefs
Programs
-
Mathematica
Table[CoefficientRules[ n! CycleIndex[SymmetricGroup[n], s] // Expand][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Nov 09 2014 *) (* Alternative program *) partitionMultiplicities[aPartn_]:=Table[Count[aPartn,m],{m,Total[aPartn]}] partitionBase[aPartn_]:=Sum[m*aPartn[[m]],{m,Length[aPartn]}] partitionFactorial[aPartn_]:=Product[m^aPartn[[m]],{m,partitionBase[aPartn]}] partitionParts[aPartn_]:=Sum[aPartn[[m]],{m,Length[aPartn]}] A181897[aPartn_]:=Multinomial@@aPartn*partitionBase[aPartn]!/(partitionFactorial[aPartn]*partitionParts[aPartn]!) Grid[Table[Map[A181897,ReverseSort[Map[partitionMultiplicities,Partitions[n]],LexicographicOrder]],{n,2,12}]] (* Gregory Gerard Wojnar, Jun 24 2025 *)
Formula
T(n,1) = A000217(n).
T(n,2) = A007290(n).
Let m2, m3, ... count the appearances of 2, 3, ... in the cycle type. E.g., the cycle type 2, 2, 2, 3, 3, 4 implies m2=3, m3=2, m4=1. Then T(n;m2,m3,m4,...) = n!/((2^m2 3^m3 4^m4 ...) m1!m2!m3!m4! ...) where m1 = n - 2m2 - 3m3 - 4m4 - ... . - Carlos Mafra, Nov 25 2014
Comments