A181962 Numbers not of the form pi(p) + pi(sqrt(p)) for some prime p.
3, 6, 12, 19, 35, 45, 68, 80, 108, 156, 173, 231, 276, 297, 344, 425, 504, 537, 628, 695, 726, 833, 909, 1024, 1188, 1278, 1321, 1409, 1452, 1553, 1908, 2008, 2174, 2224, 2524, 2583, 2766, 2953, 3082, 3281, 3477, 3554, 3911, 3989, 4134, 4210, 4674, 5154, 5323
Offset: 1
Keywords
Examples
12 is in the sequence, since pi(23)+pi(sqrt(23))=9+2=11, while pi(29)+pi(sqrt(29))=10+3=13. Also 12 is in the sequence since A000430(12)=25 is not prime.
Programs
-
Maple
a:= n-> numtheory[pi](ithprime(n)^2)+n: seq(a(n), n=1..50); # Alois P. Heinz, Feb 21 2025
-
Mathematica
t = Table[PrimePi[n] + PrimePi[Sqrt[n]], {n, Prime[Range[10000]]}]; Complement[Range[t[[-1]]], t] (* T. D. Noe, Apr 09 2012 *)
-
Python
from sympy import primepi, prime def A181962(n): return primepi(prime(n)**2)+n # Chai Wah Wu, Feb 18 2025
Formula
a(n) = pi(prime(n)^2) + n = A000879(n) + n. - Chai Wah Wu, Feb 18 2025
Comments