A181963 Prime-generating polynomial: a(n) = 25*n^2 - 1185*n + 14083.
14083, 12923, 11813, 10753, 9743, 8783, 7873, 7013, 6203, 5443, 4733, 4073, 3463, 2903, 2393, 1933, 1523, 1163, 853, 593, 383, 223, 113, 53, 43, 83, 173, 313, 503, 743, 1033, 1373, 1763, 2203, 2693, 3233, 3823, 4463, 5153, 5893, 6683, 7523, 8413, 9353, 10343, 11383, 12473
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Factor Database, Factorizations of 25n^2-1185n+14083.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n^2-237*n+14083: n in [0..220 by 5]]; // Bruno Berselli, Apr 06 2012
-
Mathematica
Table[25*n^2 - 1185*n + 14083, {n, 0, 50}] (* T. D. Noe, Apr 04 2012 *) LinearRecurrence[{3,-3,1},{14083,12923,11813},50] (* Harvey P. Dale, Aug 28 2022 *)
-
PARI
a(n)=25*n^2-1185*n+14083 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (14083 - 29326*x + 15293*x^2)/(1-x)^3. - Bruno Berselli, Apr 06 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(14083 - 1160*x + 25*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
Offset changed from 1 to 0 by Bruno Berselli, Apr 06 2012
Comments