cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181963 Prime-generating polynomial: a(n) = 25*n^2 - 1185*n + 14083.

Original entry on oeis.org

14083, 12923, 11813, 10753, 9743, 8783, 7873, 7013, 6203, 5443, 4733, 4073, 3463, 2903, 2393, 1933, 1523, 1163, 853, 593, 383, 223, 113, 53, 43, 83, 173, 313, 503, 743, 1033, 1373, 1763, 2203, 2693, 3233, 3823, 4463, 5153, 5893, 6683, 7523, 8413, 9353, 10343, 11383, 12473
Offset: 0

Views

Author

Marius Coman, Apr 04 2012

Keywords

Comments

The polynomial generates 32 primes starting from n = 0.
The polynomial 25*n^2 - 365*n + 1373 generates the same primes in reverse order.
This family of prime-generating polynomials (with the discriminant equal to -4075 = -163*5^2) is interesting for generating primes of same form: the polynomial 25*n^2 - 395*n + 1601 generates 16 primes of the form 10*k + 1 (1601, 1231, 911, 641, 421, 251, 131, 61, 41, 71, 151, 281, 461, 691, 971, 1301) and the polynomial 25*n^2 + 25*n + 47 generates 16 primes of the form 10*k + 7 (47, 97, 197, 347, 547, 797, 1097, 1447, 1847, 2297, 2797, 3347, 3947, 4597, 5297, 6047).
Note: all the polynomials of the form 25*n^2 + 5*n + 41, 25*n^2 + 15*n + 43, ..., 25*n^2 + 5*(2*k+1)*n + p, ..., 25*n^2 + 5*79*n + 1601, where p is a (prime) term of the Euler polynomial p = k^2 + k + 41, from k=0 to k=39, have their discriminant equal to -4075 = -163*5^2.

Programs

  • Magma
    [n^2-237*n+14083: n in [0..220 by 5]]; // Bruno Berselli, Apr 06 2012
    
  • Mathematica
    Table[25*n^2 - 1185*n + 14083, {n, 0, 50}] (* T. D. Noe, Apr 04 2012 *)
    LinearRecurrence[{3,-3,1},{14083,12923,11813},50] (* Harvey P. Dale, Aug 28 2022 *)
  • PARI
    a(n)=25*n^2-1185*n+14083 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (14083 - 29326*x + 15293*x^2)/(1-x)^3. - Bruno Berselli, Apr 06 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(14083 - 1160*x + 25*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Offset changed from 1 to 0 by Bruno Berselli, Apr 06 2012