cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181967 Sum of the sizes of the normalizers of all prime order cyclic subgroups of the alternating group A_n.

Original entry on oeis.org

0, 0, 3, 24, 180, 1440, 12600, 120960, 1270080, 14515200, 179625600, 2634508800, 37362124800, 566658892800, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 25545471085854720000, 587545834974658560000, 13488008733331292160000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Comments

The first 11 terms of this sequence are the same as A317527. - Andrew Howroyd, Jul 30 2018

Crossrefs

Cf. A181951 for the number of such subgroups.
Cf. A181966 is the symmetric group case.

Programs

  • GAP
    List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( AlternatingGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( AlternatingGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
    
  • GAP
    a:=function(n) local total, perm, g, p, k;
      total:= 0; g:= AlternatingGroup(n);
      for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
         if p>2 or IsEvenInt(k) then
           perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
           total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
         fi;
      od; od;
      return total;
    end; # Andrew Howroyd, Jul 30 2018
    
  • PARI
    a(n)={n!*sum(p=2, n, if(isprime(p), if(p==2, n\4, n\p)))/2} \\ Andrew Howroyd, Jul 30 2018

Formula

a(n) = n! * (A013939(n) - floor((n + 2)/4)) / 2. - Andrew Howroyd, Jul 30 2018

Extensions

Some incorrect conjectures removed by Andrew Howroyd, Jul 30 2018
Terms a(9) and beyond from Andrew Howroyd, Jul 30 2018