cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317527 Number of edges in the n-alternating group graph.

Original entry on oeis.org

0, 0, 3, 24, 180, 1440, 12600, 120960, 1270080, 14515200, 179625600, 2395008000, 34248614400, 523069747200, 8499883392000, 146459529216000, 2667655710720000, 51218989645824000, 1033983353475072000, 21896118073589760000, 485363950631239680000, 11240007277776076800000
Offset: 1

Views

Author

Eric W. Weisstein, Jul 30 2018

Keywords

Comments

Looks like the denominators of g.f.: (1-x)*exp(-x) + x^2*(Chi(x) - Shi(x)), for cosh and sinh integral functions. - Benedict W. J. Irwin, Jun 04 2018

Crossrefs

Programs

  • Magma
    [0] cat [Factorial(n)*(n-2)/2: n in [2..25]]; // Vincenzo Librandi, Jul 31 2018
  • Mathematica
    Join[{0}, Table[n! (n - 2)/2, {n, 2, 20}]]
    CoefficientList[Series[x^2/(2 (-1 + x)^2), {x, 0, 19}], x] Range[20]!

Formula

a(n) = n!*(n - 2)/2 for n > 1.
a(n) = 3 * A005990(n-1) for n>1. - Alois P. Heinz, Jul 30 2018
E.g.f.: x^3/(2*(x - 1)^2).

A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.

Original entry on oeis.org

0, 2, 12, 72, 480, 4320, 35280, 322560, 3265920, 39916800, 479001600, 6706022400, 93405312000, 1482030950400, 24845812992000, 418455797760000, 7469435990016000, 147254595231744000, 2919482409811968000, 63255452212592640000, 1430546380807864320000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Crossrefs

Cf. A181954 for the number of such subgroups.

Programs

  • GAP
    List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
    
  • GAP
    a:=function(n) local total, perm, g, p, k;
      total:= 0; g:= SymmetricGroup(n);
      for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
         perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
         total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
      od; od;
      return total;
    end; # Andrew Howroyd, Jul 30 2018
    
  • PARI
    a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ Andrew Howroyd, Jul 30 2018

Formula

a(n) = n! * A013939(n). - Andrew Howroyd, Jul 30 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jul 30 2018
Showing 1-2 of 2 results.