cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181995 a(n) = if n mod 2 = 1 then n*(n - 1) else (n - 1)^2 + (n - 2)/2.

Original entry on oeis.org

0, 0, 1, 6, 10, 20, 27, 42, 52, 72, 85, 110, 126, 156, 175, 210, 232, 272, 297, 342, 370, 420, 451, 506, 540, 600, 637, 702, 742, 812, 855, 930, 976, 1056, 1105, 1190, 1242, 1332, 1387, 1482, 1540, 1640, 1701, 1806, 1870, 1980, 2047, 2162, 2232, 2352, 2425, 2550, 2626, 2756, 2835, 2970, 3052, 3192, 3277, 3422, 3510, 3660, 3751, 3906, 4000, 4160, 4257, 4422
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2012

Keywords

Comments

Decagonal numbers (A001107) and twice second hexagonal numbers (A002943) interleaved. - Omar E. Pol, Aug 03 2012
Similar to A074377. Members of this family are A093005, A210977, A006578, A210978, this sequence, A210981, A210982. - Omar E. Pol, Aug 09 2012
Number of kites whose vertices are the vertices a regular 2n-gon. - Halil Ibrahim Kanpak, Nov 08 2018

Crossrefs

Programs

  • Magma
    [n*(4*n - 5 - (-1)^n)/4 : n in [0..80]]; // Wesley Ivan Hurt, Apr 11 2016
  • Maple
    f:=n->if n mod 2 = 1 then n*(n-1) else (n-1)^2+(n-2)/2; fi;
    [seq(f(n),n=0..130)];
  • Mathematica
    Table[n*(4*n - 5 - (-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Apr 11 2016 *)
  • PARI
    a(n)=n*(4*n-5-(-1)^n)/4 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

G.f.: -x^2*(1 + 5*x + 2*x^2)/((1 + x)^2*(x - 1)^3). - R. J. Mathar, Apr 06 2012
a(n) = n*(4*n - 5 - (-1)^n)/4. - Luce ETIENNE, Oct 04 2014
From Wesley Ivan Hurt, Apr 11 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = Sum_{i=floor((n-1)/2)..floor(3*(n-1)/2)} i. (End)
E.g.f.: x^2*cosh(x) - x*(1 - 2*x)*sinh(x)/2. - Franck Maminirina Ramaharo, Nov 08 2018