cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181997 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(3*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 2, 9, 46, 259, 1539, 9484, 59961, 386319, 2524940, 16687599, 111264335, 747080253, 5044629212, 34218868880, 232964088130, 1590660486297, 10885758313976, 74627209920879, 512254418843196, 3519150502675731, 24187028454513735, 166249089897708930
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 46*x^4 + 259*x^5 + 1539*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^4 + (A(x)-1)*(A(x)^2-1)/A(x)^9 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^15 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^22 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^30 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^3,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0,0,polcoeff(1 + serreverse(x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6 +x^2*O(x^n)),n))}
    
  • PARI
    {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0);A[#A]=-polcoeff(sum(m=1,#A,1/Ser(A)^(3*m)*prod(k=1,m,1-1/Ser(A)^k)),#A-1));A[n+1]}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+7)/2) * Product_{k=1..n} (A(x)^k - 1).