cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001002 Number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals.

Original entry on oeis.org

1, 1, 3, 10, 38, 154, 654, 2871, 12925, 59345, 276835, 1308320, 6250832, 30142360, 146510216, 717061938, 3530808798, 17478955570, 86941210950, 434299921440, 2177832612120, 10959042823020, 55322023332420, 280080119609550, 1421744205767418, 7234759677699954
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is number of (2,3)-rooted trees on n nodes.
This sequence appears to be a transform of the Fibonacci numbers A000045. This sequence is to the Fibonacci numbers as the Catalan numbers A000108 is to the all ones sequence. See link to Mathematica program. - Mats Granvik, Dec 30 2017
a(n) is the number of parking functions of size n avoiding the patterns 231, 312, and 321. - Lara Pudwell, Apr 10 2023

Examples

			a(3)=10 because a convex pentagon can be dissected in 5 ways into triangles (draw 2 diagonals from any of the 5 vertices) and in 5 ways into a triangle and a quadrilateral (draw any of the 5 diagonals).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 211 (3.2.73-74)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

n*a(n) = A038112(n-1), n > 0.

Programs

  • GAP
    List([0..25], n->Sum([0..Int(n/2)],k->Binomial(2*n-k,n+k)*Binomial(n+k,k)/(n+1))); # Muniru A Asiru, Mar 30 2018
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1, (n*(22*n-11)*
          a(n-1) + (9*n-6)*(3*n-4)*a(n-2))/(5*n*(n+1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[y - y^2 - y^3, {y, 0, 30}], x], x]]
    a[n_] := CatalanNumber[n]*Hypergeometric2F1[1/2-n/2, -n/2, -2n, -4]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2015, after Peter Luschny *)
    a[n_] := a[n] = If[n == 0, 1, Sum[a[i] a[n - 1 - i], {i, 0, n - 1}] + Sum[a[i] a[j] a[n - 2 - i - j], {i, 0, n - 2}, {j, 0, n - 2 - i}]];
    Table[a[n], {n, 0, 30}] (* Li Han, Jan 02 2021 *)
  • Maxima
    T(n,k):=if n<0 or k<0 then 0 else if nVladimir Kruchinin, Oct 03 2014 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x-x^2-x^3+x^2*O(x^n)),n+1))
    
  • PARI
    a(n)=if(n<0,0,sum(k=0,n\2,(2*n-k)!/k!/(n-2*k)!)/(n+1)!)
    
  • PARI
    a(n)=sum(k=0,n\2,binomial(2*n-k,n+k)*binomial(n+k,k))/(n+1) \\ Hanna
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=1+(1/x)*sum(m=1, n+1, Dx(m-1, (x^2+x^3 +x^2*O(x^n))^m/m!)); polcoeff(A, n)}  \\ Paul D. Hanna, Jun 22 2012
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=exp(sum(m=1, n+1, Dx(m-1, (x^2+x^3 +x^2*O(x^n))^m/x/m!)+x*O(x^n))); polcoeff(A, n)}  \\ Paul D. Hanna, Jun 22 2012
    
  • Sage
    A001002 = lambda n: catalan_number(n)*hypergeometric([1/2-n/2, -n/2], [-2*n], -4) if n>0 else 1
    [A001002(n).n(100).round() for n in range(24)] # Peter Luschny, Oct 03 2014
    

Formula

G.f. (offset 1) is series reversion of x - x^2 - x^3.
a(n) = (1/(n+1))*Sum_{k=ceiling(n/2)..n} binomial(n+k, k)*binomial(k, n-k). - Len Smiley
D-finite with recurrence 5*n*(n+1) * a(n) = 11*n*(2*n-1) * a(n-1) + 3*(3*n-2)*(3*n-4) * a(n-2). - Len Smiley
G.f.: (4*sin(asin((27*x+11)/16)/3)-1)/(3*x). - Paul Barry, Feb 02 2005
G.f. satisfies: A(x) = 1 + x*A(x)^2 + x^2*A(x)^3. - Paul D. Hanna, Jun 22 2012
Antidiagonal sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005
a(n) = Sum_{k=0..floor(n/2)} C(2*n-k, n+k)*C(n+k, k)/(n+1). - Paul D. Hanna, Mar 30 2005
G.f. satisfies: x = Sum_{n>=1} 1/(1+x*A(x))^(2*n) * Product_{k=1..n} (1 - 1/(1+x*A(x))^k). - Paul D. Hanna, Apr 05 2012
G.f.: 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) (x^2+x^3)^n/n!. - Paul D. Hanna, Jun 22 2012
G.f.: exp( Sum_{n>=1} d^(n-1)/dx^(n-1) ((x^2+x^3)^n/x)/n! ). - Paul D. Hanna, Jun 22 2012
Logarithmic derivative yields A213684. - Paul D. Hanna, Jun 22 2012
a(n) ~ 3^(3*n+3/2) / (2 * sqrt(2*Pi) * 5^(n+1/2) * n^(3/2)). - Vaclav Kotesovec, Mar 09 2014
a(n) = Catalan(n)*hypergeom([1/2-n/2, -n/2], [-2*n], -4) for n>0. - Peter Luschny, Oct 03 2014
a(n) = [x^n] 1/(1 - x - x^2)^(n+1)/(n + 1). - Ilya Gutkovskiy, Mar 29 2018
a(n) = -Sum_{i=1..n} A217596(i) * a(n-i) for n>0. - Muhammed Sefa Saydam, Jan 27 2025
a(n) = -Sum_{i=1..n+2} A217596(i) * A217596(n-i+2) for n >= 0. - Muhammed Sefa Saydam, Jul 24 2025

Extensions

Revised by Emeric Deutsch and Len Smiley, Jun 05 2005

A214693 G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(6*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).

Original entry on oeis.org

1, 1, 4, 34, 338, 3691, 42623, 510949, 6289912, 78972928, 1006665781, 12985611054, 169115724583, 2219614920740, 29318819296959, 389331204757856, 5192978617937181, 69522908878900079, 933674035184058960, 12571898958515379108, 169651868248129552194
Offset: 0

Views

Author

Paul D. Hanna, Jul 26 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1))
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 34*x^3 + 338*x^4 + 3691*x^5 + 42623*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^7 + (A(x)-1)*(A(x)^3-1)/A(x)^16 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^27 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^40 +
(A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^55 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 4*x^2 - 2*x^3 + 22*x^4 + 49*x^5 + 49*x^6 + 27*x^7 + 8*x^8 + x^9 +x^2*O(x^n)), n))}
    
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(6*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 4*x^2 - 2*x^3 + 22*x^4 + 49*x^5 + 49*x^6 + 27*x^7 + 8*x^8 + x^9, which is the g.f. of row 3 in triangle A214690.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+6)) * Product_{k=1..n} (A(x)^(2*k-1) - 1).

A209441 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(5*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 4, 30, 260, 2463, 24656, 256493, 2745149, 30031677, 334334789, 3775539592, 43145236171, 498018527632, 5798165437701, 68009060597311, 802908842472516, 9533509909631074, 113774810189434083, 1363985826416978416, 16418865502303963429, 198369001060550654651
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 260*x^4 + 2463*x^5 + 24656*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^6 + (A(x)-1)*(A(x)^2-1)/A(x)^13 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^21 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^30 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^40 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^5,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15 +x^2*O(x^n)), n))}
    
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(5*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+11)/2) * Product_{k=1..n} (A(x)^k - 1).

A181998 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(4*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 3, 18, 124, 935, 7443, 61510, 522467, 4532452, 39985628, 357641094, 3235846003, 29565353095, 272429349163, 2528938553028, 23629834081955, 222080711420655, 2098112946860819, 19915641133236764, 189853287434733709, 1816924035668823659, 17450483777418686431
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 124*x^4 + 935*x^5 + 7443*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^5 + (A(x)-1)*(A(x)^2-1)/A(x)^11 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^18 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^26 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^35 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^4,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0,0,polcoeff(1 + serreverse(x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10 +x^2*O(x^n)),n))}
    
  • PARI
    {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0);A[#A]=-polcoeff(sum(m=1,#A,1/Ser(A)^(4*m)*prod(k=1,m,1-1/Ser(A)^k)),#A-1));A[n+1]}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+9)/2) * Product_{k=1..n} (A(x)^k - 1).

A209442 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(6*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 5, 45, 470, 5365, 64766, 813012, 10505163, 138800397, 1866712401, 25470265992, 351717013269, 4906153922941, 69030042202001, 978531875343171, 13961726654230994, 200351151383453293, 2889692388200640136, 41867983817065377259, 609091785100828769195
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 470*x^4 + 5365*x^5 + 64766*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^7 + (A(x)-1)*(A(x)^2-1)/A(x)^15 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^24 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^34 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^45 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^6,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 5*x^2 + 5*x^3 + 30*x^4 - 65*x^5 - 191*x^6 + 378*x^7 + 1557*x^8 + 103*x^9 - 8551*x^10 - 23911*x^11 - 37958*x^12 - 41831*x^13 - 34156*x^14 - 21179*x^15 - 10015*x^16 - 3571*x^17 - 933*x^18 - 169*x^19 - 19*x^20 - x^21, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 5*x^2 + 5*x^3 + 30*x^4 - 65*x^5 - 191*x^6 + 378*x^7 + 1557*x^8 + 103*x^9 - 8551*x^10 - 23911*x^11 - 37958*x^12 - 41831*x^13 - 34156*x^14 - 21179*x^15 - 10015*x^16 - 3571*x^17 - 933*x^18 - 169*x^19 - 19*x^20 - x^21 +x^2*O(x^n)), n))}
    
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(6*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 5*x^2 + 5*x^3 + 30*x^4 - 65*x^5 - 191*x^6 + 378*x^7 + 1557*x^8 + 103*x^9 - 8551*x^10 - 23911*x^11 - 37958*x^12 - 41831*x^13 - 34156*x^14 - 21179*x^15 - 10015*x^16 - 3571*x^17 - 933*x^18 - 169*x^19 - 19*x^20 - x^21.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+13)/2) * Product_{k=1..n} (A(x)^k - 1).

A214670 Triangle, read by rows of n*(n+1)/2 terms, where row n equals the coefficients in the series reversion of the function G(x,n)-1 such that: x = Sum_{m>=1} 1/G(x,n)^(n*m) * Product_{k=1..m} (1 - 1/G(x,n)^k), for n>=1.

Original entry on oeis.org

1, 1, -1, -1, 1, -2, -1, 4, 4, 1, 1, -3, 0, 11, 1, -30, -42, -26, -8, -1, 1, -4, 2, 20, -19, -100, 3, 403, 808, 861, 584, 262, 76, 13, 1, 1, -5, 5, 30, -65, -191, 378, 1557, 103, -8551, -23911, -37958, -41831, -34156, -21179, -10015, -3571, -933, -169, -19, -1
Offset: 1

Views

Author

Paul D. Hanna, Jul 25 2012

Keywords

Comments

The row sums are a signed version of A005014. [From _Olivier Gérard_, Jun 26 2012, in an email to the seqfan list, which suggested that the g.f. A(x,y) is a generalization of the g.f. for A005014.]

Examples

			Consider the family of power series G(x,n) that satisfy:
x = Sum_{m>=1} 1/G(x,n)^(n*m) * Product_{k=1..m} (1 - 1/G(x,n)^k).
Examples of sequences with g.f. G(x,n) are:
n=2: A001002 = [1, 1, 1, 3, 10, 38, 154, 654, 2871, 12925, ...];
n=3: A181997 = [1, 1, 2, 9, 46, 259, 1539, 9484, 59961, ...];
n=4: A181998 = [1, 1, 3, 18, 124, 935, 7443, 61510, 522467, ...];
n=5: A209441 = [1, 1, 4, 30, 260, 2463, 24656, 256493, 2745149, ...];
n=6: A209442 = [1, 1, 5, 45, 470, 5365, 64766, 813012, 10505163, ...]; ...
Observe that Series_Reversion( G(x,n) - 1 ) is given by the polynomials:
n=1: x;
n=2: x - x^2 - x^3;
n=3: x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6;
n=4: x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10;
n=5: x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15; ...
This triangle of coefficients in the above polynomials begins:
[1];
[1, -1, -1];
[1, -2, -1, 4, 4, 1];
[1, -3, 0, 11, 1, -30, -42, -26, -8, -1];
[1, -4, 2, 20, -19, -100, 3, 403, 808, 861, 584, 262, 76, 13, 1];
[1, -5, 5, 30, -65, -191, 378, 1557, 103, -8551, -23911, -37958, -41831, -34156, -21179, -10015, -3571, -933, -169, -19, -1];
[1, -6, 9, 40, -145, -261, 1384, 2897, -8980, -38710, -14146, 258401, 990407, 2170834, 3426095, 4198850, 4137440, 3336534, 2220430, 1221799, 554027, 205250, 61206, 14351, 2550, 323, 26, 1];
[1, -7, 14, 49, -266, -245, 3325, 2596, -36710, -70556, 281645, 1413916, 1184890, -10255248, -54012830, -156371880, -329973512, -552895722, -765517470, -895408431, -896614676, -774834055, -580511469, -377792286, -213512611, -104550572, -44163315, -15985147, -4910774, -1263620, -267378, -45321, -5918, -559, -34, -1]; ...
		

Crossrefs

Cf. A214690 (variant).

Programs

  • PARI
    {T(n,k)=local(Axy=x*y);Axy=sum(m=1,n,-x^m*prod(j=1,m,(1-(1+y)^j)/(1-x*(1+y)^j)+x*O(x^n)));polcoeff(polcoeff(Axy,n,x),k,y)}
    {for(n=1,10,for(k=1,n*(n+1)/2,print1(T(n,k),", "));print(""))}
    
  • PARI
    {a(n,p)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(p*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    {for(n=1,8,Tn=Vec(serreverse(sum(m=1,n*(n+1)/2,a(m,n)*x^m)+x*O(x^(n*(n+1)/2))));for(k=1,n*(n+1)/2,print1(Tn[k],", "));print(""))}

Formula

G.f.: A(x,y) = Sum_{n>=1} -x^n * Product_{k=1..n} (1 - (1+y)^k) / (1 - x*(1+y)^k).
G.f. for row n is R(y,n) = Sum_{k=1..n*(n+1)/2} y^k*T(n,k) defined by:
A(x,y) = Sum_{n>=1} x^n * R(y,n) such that:
R(y,n) = Series_Reversion( G(y,n) - 1 ) where G(y,n) satisfies:
y = Sum_{m>=1} 1/G(y,n)^(n*m) * Product_{k=1..m} (1 - 1/G(y,n)^k), for n>=1.
Row polynomials R(y,n) satisfy:
(1) R(1,n) = (-1)^(n-1) * A005014(n) for n>=1.
(2) R(-1,n) = 1 for n>=1.
(3) R'(-1,n) = 0 for n>1.
(4) R'(1,n) = A214669(n) for n>=1.
Showing 1-6 of 6 results.