A182009 a(n) = ceiling(sqrt(2n*log(2))+(3-2*log(2))/6).
2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..10000
- D. Brink, A (probably) exact solution to the Birthday Problem, Ramanujan Journal, 2012, pp 223-238.
Crossrefs
Approximates A033810.
Programs
-
Maple
seq(ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6), n=1..1000); # Robert Israel, Aug 23 2015
-
Mathematica
Table[Ceiling[Sqrt[2 n Log[2] + (3 - 2 Log[2])/6]], {n, 82}] (* Michael De Vlieger, Aug 24 2015 *)
-
PARI
a(n) = { ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6) }; apply(n->a(n), vector(84, i, i)) \\ Gheorghe Coserea, Aug 23 2015
Comments