A182011 a(n) is the smallest number k such that the difference between the greatest prime divisor of k and the sum of the other distinct prime divisors equals n.
6, 2, 3, 21, 5, 55, 7, 33, 22, 39, 11, 85, 13, 51, 34, 57, 17, 115, 19, 69, 46, 203, 23, 145, 1295, 87, 58, 93, 29, 259, 31, 185, 615, 111, 74, 205, 37, 123, 82, 129, 41, 235, 43, 141, 94, 371, 47, 265, 1239, 159, 106, 413, 53, 295, 2345, 177, 118, 183, 59, 469
Offset: 1
Keywords
Examples
a(1) = 6 because 6 = 2*3 and 3 - 2 = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001221.
Programs
-
Mathematica
dgpd[n_]:=With[{fi=FactorInteger[n][[;;,1]]},fi[[-1]]-Total[Most[fi]]]; Join[{6},With[{tbl=Table[ {n,dgpd[n]},{n,2500}]},Table[SelectFirst[tbl,#[[2]]==k&],{k,2,60}]][[;;,1]]] (* Harvey P. Dale, Jul 29 2024 *)
Comments