A182107 Number of monomer-dimer tatami tilings (no four tiles meet) of the n X n grid with n monomers and equal numbers of vertical and horizontal dimers, up to rotational symmetry.
0, 0, 2, 2, 0, 0, 10, 20, 0, 0, 114, 210, 0, 0, 1322, 2460, 0, 0, 16428, 31122, 0, 0, 214660, 410378, 0, 0, 2897424, 5575682, 0, 0, 40046134, 77445152, 0, 0, 563527294, 1093987598, 0, 0, 8042361426, 15660579168, 0, 0, 116083167058, 226608224226, 0, 0, 1691193906828, 3308255447206, 0, 0, 24830916046462, 48658330768786, 0, 0, 366990100477712, 720224064591558, 0, 0, 5454733737618820
Offset: 2
Keywords
Examples
For n=4 the a(4)=2 solutions are ._ _ _ _. |_| |_|_| | |_|_ _| |_|_ _| | |_ _|_|_| . ._ _ _ _. |_|_| |_| |_ _|_| | | |_ _|_| |_|_|_ _| . For n=5 the a(5)=2 solutions are ._ _ _ _ _. |_|_ _| |_| |_ _| |_|_| |_| |_|_ _| | |_|_ _| | |_|_ _|_|_| . ._ _ _ _ _. |_| |_ _|_| |_|_| |_ _| |_ _|_| |_| | |_ _|_| | |_|_|_ _|_|
Links
- Alejandro Erickson, Table of n, a(n) for n = 2..199
- Alejandro Erickson, Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
Programs
-
Mathematica
S[0, 0]=1; S[0, ]=0; S[n, k_] /; k<0 || k>Binomial[n+1, 2] =0; S[n_, k_]:= S[n, k] = S[n-1, k] + S[n-1, k-n]; a[n_]:= 2 Sum[Sum[k2 = (n^2-n)/4 - (n-i-1) - k1; S[n-i-2, k1] S[i-1, k2], {k1, 0, (n^2-n)/4 - (n-i-1)}] + Sum[k2 = (n^2-n)/4; S[Floor[(n-2)/2], k1] S[Floor[(n-2)/2], k2], {k1, 0, (n^2-n)/4}], {i, 1, Floor[(n-1)/2]}]; Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Jan 29 2019 *)
-
Sage
@cached_function def genS(n,z): out = 1 for i in [j+1 for j in range(n)]: out = out*(1+z^i) return out VH = lambda n,z: 2*sum([genS(n-i-2,z)*genS(i-1,z)*z^(n-i-1) for i in range(1,floor((n-1)/2)+1)]) + genS(floor((n-2)/2),z)^2 ZP.
= PolynomialRing(ZZ) #4 divides n^2-n? coefficient of VH : 0 a = lambda n: (4.divides(n^2-n) and [ZP(VH(n,x))[(n^2-n)/4]] or [0])[0]
Formula
a(n) = 2 * Sum_{i=1..floor((n-1)/2)} (Sum_{j+k == (n^2-n)/4-(n-i-1)} S(n-i-2,j) * S(i-1,k) + Sum_{j+k == (n^2-n)/4} S(floor((n-2)/2), j) * S(floor((n-2)/2), k) ), where S(n,k) = S(n-1, k) + S(n-1, k-n), S(0,0)=1, S(0,k) = 0, S(n,k) = 0 if k < 0 or k > binomial(n+1,2).
Comments