A182111 Number of iterations of the map n -> sum of the cubes of the decimal digits of n.
1, 7, 3, 6, 6, 10, 6, 6, 4, 1, 8, 5, 5, 6, 10, 3, 8, 2, 2, 7, 5, 4, 7, 3, 3, 8, 2, 4, 3, 3, 5, 7, 6, 3, 6, 6, 1, 8, 6, 6, 6, 3, 3, 7, 5, 5, 1, 6, 4, 6, 10, 3, 6, 5, 3, 5, 5, 8, 10, 10, 3, 8, 6, 5, 5, 6, 7, 11, 6, 6, 8, 2, 1, 1, 5, 7, 7, 8, 4, 6, 2, 4, 8, 6, 8
Offset: 1
Examples
a(3) = 3 because : 3^3 = 27 -> 2^3 + 7^3 = 351; 351 -> 3^3 + 5^3 + 1^3 = 153; 153 -> 1^3+5^3+3^3 = 153 is the end because this number is already in the trajectory. Hence we obtain the map : 3 -> 27 -> 351 -> 153 with 3 iterations.
Programs
-
Maple
a:= proc(n) local k, m, s; m:= n; s:= {}; for k from 0 do m:= add(i^3, i=convert(m, base, 10)); if m in s then return k fi; s:= s union {m} od end: seq(a(n), n=1..85); # Alois P. Heinz, Mar 01 2018
Comments