cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333599 a(n) = Fibonacci(n) * Fibonacci(n+1) mod Fibonacci(n+2).

Original entry on oeis.org

0, 1, 2, 1, 7, 1, 20, 1, 54, 1, 143, 1, 376, 1, 986, 1, 2583, 1, 6764, 1, 17710, 1, 46367, 1, 121392, 1, 317810, 1, 832039, 1, 2178308, 1, 5702886, 1, 14930351, 1, 39088168, 1, 102334154, 1, 267914295, 1, 701408732, 1, 1836311902, 1, 4807526975, 1, 12586269024
Offset: 0

Views

Author

Adnan Baysal, Mar 28 2020

Keywords

Examples

			a(0) = 0*1 mod 1 = 0;
a(1) = 1*1 mod 2 = 1;
a(2) = 1*2 mod 3 = 2;
a(3) = 2*3 mod 5 = 1;
a(4) = 3*5 mod 8 = 7.
		

Crossrefs

Equals A035508 interleaved with A000012.

Programs

  • Mathematica
    With[{f = Fibonacci}, Table[Mod[f[n] * f[n+1], f[n+2]], {n, 0, 50}]] (* Amiram Eldar, Mar 28 2020 *)
  • PARI
    a(n) = if (n % 2, 1, fibonacci(n+2) - 1); \\ Michel Marcus, Mar 29 2020
    
  • PARI
    concat(0, Vec(x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)) + O(x^45))) \\ Colin Barker, Mar 29 2020
  • Python
    def a(n):
        f1 = 0
        f2 = 1
        for i in range(n):
            f = f1 + f2
            f1 = f2
            f2 = f
        return (f1 * f2) % (f1 + f2)
    

Formula

a(2n+1) = 1, and a(2n) = F(2n+2) - 1, and lim(a(2n+2)/a(2n)) = phi^2 by d'Ocagne's identity.
a(n) = F(n) * F(n+1) mod (F(n) + F(n+1)) since F(n+2) := F(n+1) + F(n).
From Colin Barker, Mar 28 2020: (Start)
G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)).
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n>4.
(End)

A288209 Numbers k such that prime(k) * prime(k+1) mod prime(k+2) is odd.

Original entry on oeis.org

1, 2, 5, 7, 10, 14, 15, 23, 29, 46, 61
Offset: 1

Views

Author

Zak Seidov, Jun 06 2017

Keywords

Comments

Finite? Full?
Next term, if it exists, is greater than 1026351685.
From Robert Israel, Jun 19 2017: (Start)
Numbers k such that floor(A001223(k+1)*A031131(k)/prime(k+2)) is odd.
Cramér's conjecture implies the sequence is finite. (End)

Examples

			The first five primes are 2, 3, 5, 7, 11.
We see that 2 * 3 = 1 mod 5, so 1 (corresponding to the first prime, 2) is in the sequence.
We see that 3 * 5 = 1 mod 7, so 2 (corresponding to the second prime, 3) is in the sequence.
But 5 * 7 = 2 mod 11, so 3 (corresponding to the third prime, 5) is not in the sequence.
		

Crossrefs

Programs

Showing 1-2 of 2 results.