cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238535 Sum of divisors d of n where d > sqrt(n).

Original entry on oeis.org

0, 2, 3, 4, 5, 9, 7, 12, 9, 15, 11, 22, 13, 21, 20, 24, 17, 33, 19, 35, 28, 33, 23, 50, 25, 39, 36, 49, 29, 61, 31, 56, 44, 51, 42, 75, 37, 57, 52, 78, 41, 84, 43, 77, 69, 69, 47, 108, 49, 85, 68, 91, 53, 108, 66, 106, 76, 87, 59, 147, 61, 93, 93, 112, 78, 132
Offset: 1

Views

Author

Michel Lagneau, Feb 28 2014

Keywords

Comments

Properties of the sequence:
a(n) = n if n is prime because sigma(n) = n+1 and A066839(n) = 1;
a(p^2) = p^2 if p is prime because sigma(p^2) = p^2+p+1 and A066839(p^2)= p+1 => A000203(p^2) - A066839(p^2)= p^2;
a(m) = 2*m if m = A182147(n) = 42, 54, 66, 78, 102, 114,... (numbers n equal to the sum of its proper divisors greater than square root of n).

Examples

			a(8) = 12 because A000203(8)= 15 and A066839(8) = 3 => 15 - 8 = 12.
		

Crossrefs

Programs

  • Mathematica
    lst={}; f[n_]:=DivisorSigma[1,n]-Plus@@Select[Divisors@n,#<=Sqrt@n&];Do[If[IntegerQ[f[n]],AppendTo[lst, f[n]]],{n,1,200}];lst
  • PARI
    a(n) = sumdiv(n, d, d*(d>sqrt(n))); \\ Michel Marcus, Feb 28 2014
    
  • Sage
    def a(n):
        return sum([d for d in Integer(n).divisors() if d>sqrt(n)]) # Ralf Stephan, Mar 08 2014

Formula

a(n) = A000203(n) - A066839(n).

Extensions

Better name from Ralf Stephan, Mar 08 2014

A182292 Smallest odd number k such that is equal to the sum of its proper divisors greater than k^(1/n), or 0 if none exist.

Original entry on oeis.org

34155, 407715, 8415
Offset: 2

Views

Author

Manuel Valdivia, Apr 24 2012

Keywords

Comments

a(8) = 159030135. There is no n > 4 for which a(n) is smaller unless a(n) = 0. - Charles R Greathouse IV, Apr 25 2012
Other than a(2) to a(4) and a(8), there is no solution < 2*10^10 for a(n) up to a(1000). - Donovan Johnson, Aug 23 2012
From Alexander Violette, Feb 29 2024: (Start)
a(7) <= 7650499534755.
a(14) <= 221753170660847595. (End)

Examples

			The sum proper divisors of 407715 greater than 407715^(1/3) is 77 + 105 + 165 + 231 + 353 + 385 + 1059 + 1155 + 1765 + 2471 + 3883 + 5295 + 7413 + 11649 + 12355 + 19415 + 27181 + 37065 + 58245 + 81543 + 135905 = 407715.
		

Crossrefs

See A182147 for more details for 34155.

Programs

  • Mathematica
    t={}; d[n_]:= Select[Drop[Divisors[n],-1], #1>n^(1/p)&]; Do[s=Select[Range[1,5*10^5,2], #==Plus@@d[#]&];
      AppendTo[t,s], {p,2,4}]; Flatten[t]
  • PARI
    a(n)=my(t,k=8413);while(k+=2,if(sigma(k,-1)>2,if(ispower(k,n,&t),,t=k^(1/n)\1);if(sumdiv(k,d,if(d>t,d))==2*k,return(k)))) \\ Charles R Greathouse IV, Apr 25 2012
Showing 1-2 of 2 results.