A182150 Semiprimes that are also semiprime when their digits are sorted into nondecreasing order.
4, 6, 9, 14, 15, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 69, 77, 85, 93, 94, 111, 115, 118, 119, 122, 123, 129, 133, 134, 143, 145, 146, 155, 158, 159, 166, 169, 177, 178, 185, 187, 202, 205, 206, 213, 219, 221, 226, 235, 237, 247, 249, 253
Offset: 1
Examples
51 is in the sequence because, though it is a semiprime whose digits are in descending order, once the digits are sorted to be nondecreasing, it is the semiprime 15, whose digits are (left to right) nondecreasing.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
h:= proc(m) local k; for k from m+1 while isprime(k) or add(i[2], i=ifactors(k)[2])<>2 do od; k end: a:= proc(n) option remember; local k, l, s; k:= h(a(n-1)); do l:= sort(convert(k, base, 10)); s:= add(l[i]*10^(nops(l)-i), i=1..nops(l)); if h(s-1)=s then return k else k:=h(k) fi od end: a(0):=0: seq(a(n), n=1..100); # Alois P. Heinz, Apr 22 2012
-
Mathematica
Select[Range[300],PrimeOmega[#]==2&&PrimeOmega[FromDigits[ Sort[ IntegerDigits[ #]]]]==2&] (* Harvey P. Dale, Nov 13 2014 *)
Extensions
More terms from Alois P. Heinz, Apr 22 2012
Comments