A182176 Number of affine subspaces of GF(2)^n.
1, 3, 11, 51, 307, 2451, 26387, 387987, 7866259, 221472147, 8703733139, 479243212179, 37070813107603, 4036214347068819, 619402703369958803, 134108807406166799763, 40994263184865380595091, 17700624176280878586721683, 10799420012335823235718509971
Offset: 0
Examples
For n=2, there are 4 affine subspaces of dimension 0, 6 of dimension 1, and 1 of dimension 2.
Links
- Gaëtan Leurent, Table of n, a(n) for n = 0..100
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Crossrefs
Cf. A006116.
Programs
-
GAP
List([0..20],n->Sum([0..n],k->(2^n/2^k*Product([0..k-1],i->(2^n-2^i)/(2^k-2^i))))); # Muniru A Asiru, Aug 01 2018
-
Mathematica
Table[Sum[2^n/2^k * Product[(2^n-2^i)/(2^k-2^i),{i,0,k-1}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 22 2014 *) Table[Sum[QBinomial[n, k, 2] 2^k, {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 17 2016 *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m+1,1-2^k*x+x*O(x^n))),n)} /* Paul D. Hanna, May 01 2012 */
-
Sage
def a(n): return sum([(2^n/2^k)*prod([(2^n-2^i)/(2^k-2^i) for i in [0..k-1]]) for k in [0..n]])
Formula
a(n) = Sum_{k=0..n} (2^n/2^k * Product_{i=0..k-1} (2^n - 2^i)/(2^k - 2^i)).
G.f.: Sum_{n>=0} x^n / Product_{k=1..n+1} (1-2^k*x). - Paul D. Hanna, May 01 2012
a(n) ~ c * 2^((n+1)^2/4), where c = EllipticTheta[2, 0, 1/2] / QPochhammer[1/2, 1/2] = A242939 = 7.3719494907662273375414118336... if n is even, and c = EllipticTheta[3, 0, 1/2] / QPochhammer[1/2, 1/2] = A242938 = 7.3719688014613165091531912082... if n is odd. - Vaclav Kotesovec, Jun 22 2014
Comments