A182261 Numbers n such that n^2 + {1,3,7} are semiprimes.
44, 46, 80, 88, 102, 104, 108, 226, 234, 238, 246, 272, 290, 308, 310, 328, 334, 358, 370, 426, 456, 480, 514, 526, 530, 586, 588, 614, 720, 766, 790, 842, 846, 848, 872, 880, 884, 896, 898, 900, 934, 940, 974, 980, 1040, 1076, 1078, 1088, 1110, 1160, 1208
Offset: 1
Examples
44 is in the sequence because (44^2) + 1 = 1937 = 13 * 149, (44^2) + 3 = 1939 = 7 * 277, and (442) + 7 = 1943 = 29 * 67.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Magma
IsSemiprime:=func
; [n: n in [2..1225] | forall{n^2+i: i in [1,3,7] | IsSemiprime(n^2+i)}]; // Bruno Berselli, Apr 22 2012 -
Maple
a:= proc(n) option remember; local k; for k from 1+a(n-1) while map(x-> not isprime(k^2+x) and add(i[2], i=ifactors(k^2+x)[2])=2, [1, 3, 7])<>[true$3] do od; k end: a(0):=0: seq(a(n), n=1..50); # Alois P. Heinz, Apr 22 2012
-
Mathematica
okQ[n_] := AllTrue[n^2 + {1, 3, 7}, PrimeOmega[#] == 2&]; Select[Range[2000], okQ] (* Jean-François Alcover, Jun 01 2022 *)
Formula
{ n : {n^2+1, n^2+3, n^2+7} in A001358 }.
Comments