cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182261 Numbers n such that n^2 + {1,3,7} are semiprimes.

Original entry on oeis.org

44, 46, 80, 88, 102, 104, 108, 226, 234, 238, 246, 272, 290, 308, 310, 328, 334, 358, 370, 426, 456, 480, 514, 526, 530, 586, 588, 614, 720, 766, 790, 842, 846, 848, 872, 880, 884, 896, 898, 900, 934, 940, 974, 980, 1040, 1076, 1078, 1088, 1110, 1160, 1208
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2012

Keywords

Comments

This is to A182238 as A001358 semiprimes are to A000040 primes.

Examples

			44 is in the sequence because (44^2) + 1 = 1937 = 13 * 149, (44^2) + 3 = 1939 = 7 * 277, and  (442) + 7 = 1943 = 29 * 67.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..1225] | forall{n^2+i: i in [1,3,7] | IsSemiprime(n^2+i)}]; // Bruno Berselli, Apr 22 2012
  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+a(n-1) while map(x-> not isprime(k^2+x) and
              add(i[2], i=ifactors(k^2+x)[2])=2, [1, 3, 7])<>[true$3]
          do od; k
        end: a(0):=0:
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 22 2012
  • Mathematica
    okQ[n_] := AllTrue[n^2 + {1, 3, 7}, PrimeOmega[#] == 2&];
    Select[Range[2000], okQ] (* Jean-François Alcover, Jun 01 2022 *)

Formula

{ n : {n^2+1, n^2+3, n^2+7} in A001358 }.