A182297 Wieferich numbers (2): positive odd integers q such that q and (2^A002326((q-1)/2)-1)/q are not relatively prime.
21, 39, 55, 57, 105, 111, 147, 155, 165, 171, 183, 195, 201, 203, 205, 219, 231, 237, 253, 273, 285, 291, 301, 305, 309, 327, 333, 355, 357, 385, 399, 417, 429, 453, 465, 483, 489, 495, 497, 505, 507, 525, 543, 555, 579, 597, 605, 609, 615, 627, 633, 651, 655
Offset: 1
Keywords
Examples
21 is in the sequence because the multiplicative order of 2 mod 21 is 6, and (2^6-1)/21 = 3, which is not coprime to 21.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Z. Franco and C. Pomerance, On a conjecture of Crandall concerning the qx + 1 problem, Math. Comp. Vol. 64, No. 211 (1995), 1333-1336.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local q; for q from 2 +`if`(n=1, 1, a(n-1)) by 2 while igcd((2^order(2, q)-1)/q, q)=1 do od; q end: seq (a(n), n=1..60); # Alois P. Heinz, Apr 23 2012
-
Mathematica
Select[Range[1, 799, 2], GCD[#, (2^MultiplicativeOrder[2, #] - 1)/#] > 1 &] (* Alonso del Arte, Apr 23 2012 *)
-
PARI
is(n)=n%2 && gcd(lift(Mod(2,n^2)^znorder(Mod(2,n))-1)/n,n)>1 \\ Charles R Greathouse IV, Feb 02 2014
Formula
Odd numbers q such that A002326((q^2-1)/2) < q * A002326((q-1)/2). Other positive odd integers satisfy the equality. - Thomas Ordowski, Feb 03 2014
Odd numbers q such that gcd(A165781((q-1)/2), q) > 1. - Thomas Ordowski, Feb 12 2014
Comments