A228026
Primes of the form 4^k + 3.
Original entry on oeis.org
7, 19, 67, 4099, 65539, 262147, 268435459, 1073741827, 19342813113834066795298819
Offset: 1
67 is a term because 4^3 + 3 = 67 is prime.
Cf. Primes of the form r^k + h:
A092506 (r=2, h=1),
A057733 (r=2, h=3),
A123250 (r=2, h=5),
A104066 (r=2, h=7),
A104070 (r=2, h=9),
A057735 (r=3, h=2),
A102903 (r=3, h=4),
A102870 (r=3, h=8),
A102907 (r=3, h=10),
A290200 (r=4, h=1), this sequence (r=4, h=3),
A228027 (r=4, h=9),
A182330 (r=5, h=2),
A228029 (r=5, h=6),
A102910 (r=5, h=8),
A182331 (r=6, h=1),
A104118 (r=6, h=5),
A104115 (r=6, h=7),
A104065 (r=7, h=4),
A228030 (r=7, h=6),
A228031 (r=7, h=10),
A228032 (r=8, h=3),
A228033 (r=8, h=5),
A144360 (r=8, h=7),
A145440 (r=8, h=9),
A228034 (r=9, h=2),
A159352 (r=10, h=3),
A159031 (r=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 4^n+3];
-
Select[Table[4^n + 3, {n, 0, 200}], PrimeQ]
A228032
Primes of the form 8^n + 3.
Original entry on oeis.org
11, 67, 4099, 32771, 262147, 1073741827, 19342813113834066795298819
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A182330 (k=5, h=2),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4), this sequence (k=8, h=3),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [0..300] | IsPrime(a) where a is 8^n+3];
-
Select[Table[8^n + 3, {n, 0, 300}], PrimeQ]
A228029
Primes of the form 5^n + 6.
Original entry on oeis.org
7, 11, 31, 131, 631, 1220703131
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A182330 (k=5, h=2), this sequence (k=5, h=6),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 5^n+6];
-
Select[Table[5^n + 6, {n, 0, 200}], PrimeQ]
A228030
Primes of the form 7^n + 6.
Original entry on oeis.org
7, 13, 349, 33232930569607, 2651730845859653471779023381607
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A182330 (k=5, h=2),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4), this sequence (k=7, h=6),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [0..300] | IsPrime(a) where a is 7^n+6];
-
Select[Table[7^n + 6, {n, 0, 300}], PrimeQ]
A228031
Primes of the form 7^n + 10.
Original entry on oeis.org
11, 17, 59, 353, 2411, 117659, 823553, 1977326753, 9387480337647754305659, 3219905755813179726837617, 44567640326363195900190045974568017, 616873509628062366290756156815389726793178417, 30226801971775055948247051683954096612865741953
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A182330 (k=5, h=2),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4), this sequence (k=7, h=10),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [0..300] | IsPrime(a) where a is 7^n+10];
-
Select[Table[7^n + 10, {n, 0, 300}], PrimeQ]
A228027
Primes of the form 4^k + 9.
Original entry on oeis.org
13, 73, 1033, 262153, 1073741833, 73786976294838206473, 4835703278458516698824713
Offset: 1
262153 is a term because 4^9 + 9 = 262153 is prime.
Cf. Primes of the form r^k + h:
A092506 (r=2, h=1),
A057733 (r=2, h=3),
A123250 (r=2, h=5),
A104066 (r=2, h=7),
A104070 (r=2, h=9),
A057735 (r=3, h=2),
A102903 (r=3, h=4),
A102870 (r=3, h=8),
A102907 (r=3, h=10),
A290200 (r=4, h=1),
A228026 (r=4, h=3), this sequence (r=4, h=9),
A182330 (r=5, h=2),
A228029 (r=5, h=6),
A102910 (r=5, h=8),
A182331 (r=6, h=1),
A104118 (r=6, h=5),
A104115 (r=6, h=7),
A104065 (r=7, h=4),
A228030 (r=7, h=6),
A228031 (r=7, h=10),
A228032 (r=8, h=3),
A228033 (r=8, h=5),
A144360 (r=8, h=7),
A145440 (r=8, h=9),
A228034 (r=9, h=2),
A159352 (r=10, h=3),
A159031 (r=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 4^n+9];
-
Select[Table[4^n + 9, {n, 0, 200}],PrimeQ]
A228033
Primes of the form 8^k + 5.
Original entry on oeis.org
13, 2787593149816327892691964784081045188247557, 15177100720513508366558296147058741458143803430094840009779784451085189728165691397
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A182330 (k=5, h=2),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4), this sequence (k=8, h=5),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [1..300] | IsPrime(a) where a is 8^n+5];
-
Select[Table[8^n + 5, {n, 4000}], PrimeQ]
A228028
Primes of the form 5^n + 4.
Original entry on oeis.org
5, 29, 15629, 9765629
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A228027 (k=4, h=9),
A182330 (k=5, h=2), this sequence (k=5, h=4),
A228029 (k=5, h=6),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4),
A228030 (k=7, h=6),
A228031 (k=7, h=10),
A228032 (k=8, h=3),
A228033 (k=8, h=5),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 5^n+4];
-
Select[Table[5^n + 4, {n, 0, 200}], PrimeQ]
A309527
Numbers k such that 6^k + 17 is prime.
Original entry on oeis.org
1, 2, 3, 5, 8, 10, 19, 27, 79, 198, 565, 787, 2183, 3811, 4748, 6210, 7887, 8965, 13303, 20125, 23433, 28797
Offset: 1
3 is in the sequence because 6^3 + 17 = 233, which is prime.
-
lista(nn)=for(k=0,nn,if(ispseudoprime(6^k+17),print1(k", ")))
Showing 1-9 of 9 results.
Comments