A182334 Triangular numbers that differ from a square by 1.
0, 1, 3, 10, 15, 120, 325, 528, 4095, 11026, 17955, 139128, 374545, 609960, 4726275, 12723490, 20720703, 160554240, 432224101, 703893960, 5454117903, 14682895930, 23911673955, 185279454480, 498786237505, 812293020528, 6294047334435, 16944049179226
Offset: 1
Examples
T(2) = 3 = 2^2 - 1, T(4) = 10 = 3^2 + 1, T(5) = 15 = 4^2 - 1, and T(15) = 120 = 11^2 - 1.
References
- Edward J. Barbeau, Pell's Equation (Springer 2003) at 17.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,35,0,0,-35,0,0,1).
Programs
-
Magma
I:=[0,1,3,10,15,120,325,528,4095,11026,17955]; [n le 11 select I[n] else 35*Self(n-3)-35*Self(n-6)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, Jun 21 2015
-
Mathematica
lst = {}; Do[t = n*(n + 1)/2; If[IntegerQ[(t - 1)^(1/2)] || IntegerQ[(t + 1)^(1/2)], AppendTo[lst, t]], {n, 0, 10^4}]; lst (* Arkadiusz Wesolowski, Aug 06 2012 *) b[n_] := b[n] = 6 b[n - 1] - b[n - 2] + 2; b[0] = 1; b[1] = 4; c[n_] := c[n] = 6 c[n - 2] - c[n - 4] + 2; c[0] = 0; c[1] = 2; c[2] = 5; c[3] = 15; #(# + 1)/2 & /@ Union@ Join[ Array[b, 9, 0], Array[c, 18, 0]] (* or *) #(# + 1)/2 & /@ Join[{0, 1}, LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {2, 4, 5, 15, 25, 32, 90}, 35]] (* or *) #(# + 1)/2 & /@ CoefficientList[ Series[x + x^2 (1 + x) (2 + x^2 - 3 x^3 + x^4)/((1 - x) (1 - 6 x^3 + x^6)), {x, 0, 36}], x] (* Robert G. Wilson v, Jun 20 2015 *) a[n_] := a[n] = 35 a[n - 3] - 35 a[n - 6] + a[n - 9]; a[1] = 0; a[2] = 1; a[3] = 3; a[4] = 10; a[5] = 15; a[6] = 120; a[7] = 325; a[8] = 528; a[9] = 4095; a[10] = 11026; a[11] = 17955; Array[a, 36] (* Robert G. Wilson v after Charles R Greathouse IV, Apr 25 2012 *) Select[Accumulate[Range[0,6*10^6]],AnyTrue[Sqrt[#+{1,-1}],IntegerQ]&] (* or *) LinearRecurrence[{0,0,35,0,0,-35,0,0,1},{0,1,3,10,15,120,325,528,4095,11026,17955},40] (* The first program uses the AnyTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 24 2015 *)
-
PARI
concat(0, Vec(x^2*(1+3*x+10*x^2-20*x^3+15*x^4-25*x^5+38*x^6+x^8-x^9)/((1-x)*(1+x+x^2)*(1-34*x^3+x^6)) + O(x^30))) \\ Colin Barker, Sep 17 2016
Formula
a(n) = 35*a(n-3) - 35*a(n-6) + a(n-9). - Charles R Greathouse IV, Apr 25 2012
G.f.: x^2*(1+3*x+10*x^2-20*x^3+15*x^4-25*x^5+38*x^6+x^8-x^9) / ((1-x)*(1+x+x^2)*(1-34*x^3+x^6)). - Colin Barker, Sep 17 2016
Comments