cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182398 a(n) = (Sum_{k=1..2n} k^2n) mod 2n.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 7, 8, 3, 6, 11, 4, 13, 14, 5, 16, 17, 6, 19, 12, 1, 22, 23, 8, 25, 26, 9, 28, 29, 58, 31, 32, 11, 34, 35, 12, 37, 38, 13, 24, 41, 2, 43, 44, 15, 46, 47, 16, 49, 30, 17, 52, 53, 18, 45, 56, 19, 58, 59, 116, 61, 62, 3, 64, 65, 22, 67, 68, 23
Offset: 1

Views

Author

Michel Lagneau, Apr 27 2012

Keywords

Comments

Sum_{k=1..n} k^n (mod n) = 0 if n odd.
Properties of this sequence:
a(n) = 1 for n = 1, 3, 21, 903, ...
a(n) = n if n not divisible by 3;
a(3*n) = n except for n = 7, 10, 14, 20, 21, 26, 28, 30, 35, ...
a(21*n) = n, except for n = 10, 20, 26, 30, 40, 43, 50, 52, ...
a(903*n) = n, except for n = 10, ....
It appears that a(A007018(n)/2) = 1 and conjecturally a(m*A007018(n)/2) = m for a majority of value m.
No, a(A007018(n)/2) <> 1 for n > 4. (For example, a(A007018(5)/2) = a(1631721) = 1807.) - Jonathan Sondow, Oct 18 2013
0 < a(n) < 10 for n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 21, 24, 27, 42, 63, 84, 105, 126, 147, 168, 189, 903, 1806, 2709, 3612, 4515, 5418, 6321, 7224, 8127, .... Search limit was 25000. - Robert G. Wilson v, Jun 18 2015

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do: s:=sum('k^(2*n)', 'k'=1..2*n)
    : x:=irem(s,2*n): printf(`%d, `,x):od:
    # second Maple program:
    a:= n-> add(k&^(2*n) mod (2*n), k=1..2*n) mod (2*n):
    seq(a(n), n=1..100);
  • Mathematica
    Table[Mod[Total[PowerMod[Range[2*n], 2*n, 2*n]], 2*n], {n, 100}] (* T. D. Noe, Apr 28 2012 *)

Formula

a(n) = A031971(2n) mod 2n. - Jonathan Sondow, Oct 18 2013