cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A031971 a(n) = Sum_{k=1..n} k^n.

Original entry on oeis.org

1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1

Views

Author

Chris du Feu (chris(AT)beckingham0.demon.co.uk)

Keywords

Comments

From Alexander Adamchuk, Jul 21 2006: (Start)
p^(3k - 1) divides a(p^k) for prime p > 2 and k = 1, 2, 3, 4, ... or p^2 divides a(p) for prime p > 2. p^5 divides a(p^2) for prime p > 2. p^8 divides a(p^3) for prime p > 2. p^11 divides a(p^4) for prime p > 2.
p^2 divides a(2p) for prime p > 3. p^3 divides a(3p) for prime p > 2. p^2 divides a(4p) for prime p > 5. p^3 divides a(5p) for prime p > 3. p^2 divides a(6p) for prime p > 7.
p divides a(2p - 1) for all prime p. p^3 divides a(2p^2 - 1) for all prime p. p^5 divides a(2p^3 - 1) for all prime p.
p divides a((p - 1)/2) for p = 5, 13, 17, 29, 37, 41, 53, 61, ... = A002144 Pythagorean primes: primes of form 4n + 1.
(End)
If p prime then a(p-1) == -1 (mod p) [see De Koninck & Mercier reference]. Example: for p = 7, a(6) = 67171 = 7 * 9596 - 1. - Bernard Schott, Mar 06 2020

References

  • J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

A diagonal of array A103438.
For a(n) mod n see A182398.

Programs

Formula

a(n) is asymptotic to (e/(e - 1))*n^n. - Benoit Cloitre, Dec 17 2003
a(n) = zeta(-n) - zeta(-n, n + 1), where zeta(s) is the Riemann zeta function and zeta(s, a) is the Hurwitz zeta function, a generalization of the Riemann zeta function. - Alexander Adamchuk, Jul 21 2006
a(n) == 1 (mod n) <==> n is in A014117 = 1, 2, 6, 42, 1806 (see the link "On the congruence ..."). - Jonathan Sondow, Oct 18 2013
a(A054377(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
a(n) = n! * [x^n] exp(x)*(exp(n*x) - 1)/(exp(x) - 1). - Ilya Gutkovskiy, Apr 07 2018
a(n) ~ ((e*n+1)/((e-1)*(n+1))) * n^n. - N. J. A. Sloane, Oct 13 2018, based on email from Claude F. Leibovici who claims this is slightly better than Cloitre's version when n is small.

A343932 a(n) = (Sum_{k=1..n} k^k) mod n.

Original entry on oeis.org

0, 1, 2, 0, 3, 5, 5, 4, 1, 7, 3, 4, 11, 13, 3, 4, 0, 15, 0, 4, 14, 13, 10, 20, 22, 11, 25, 20, 21, 1, 18, 4, 6, 17, 27, 12, 31, 27, 20, 28, 6, 41, 34, 32, 31, 45, 45, 4, 11, 25, 39, 48, 21, 45, 46, 12, 53, 47, 41, 32, 9, 5, 55, 4, 25, 7, 47, 8, 45, 19, 12, 60, 50, 43, 20, 60, 54, 29, 72, 36, 70, 31, 74, 40, 69, 7, 18, 20, 63, 3, 24, 32
Offset: 1

Views

Author

Seiichi Manyama, May 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Sum[PowerMod[k, k, n], {k, 1, n}], n]; Array[a, 100] (* Amiram Eldar, May 04 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^k)%n;
    
  • Python
    def A343932(n): return sum(pow(k,k,n) for k in range(1,n+1)) % n # Chai Wah Wu, Jun 18 2022

Formula

a(n) = A001923(n) mod n.
Showing 1-2 of 2 results.