A182606 Number of conjugacy classes in GL(n,13).
1, 12, 168, 2184, 28548, 371112, 4826640, 62746152, 815728368, 10604468628, 137858461104, 1792159992168, 23298084722808, 302875101365928, 3937376380474992, 51185892946146672, 665416609115237772, 8650415918497693704, 112455406951074120024
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Magma
/* The program does not work for n>5: */ [1] cat [NumberOfClasses(GL(n, 13)): n in [1..5]];
-
Maple
with(numtheory): b:= proc(n) b(n):= add(phi(d)*13^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
Mathematica
b[n_] := Sum[EulerPhi[d]*13^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1,N, (1-x^n)/(1-13*x^n) ); v=Vec(gf) /* Joerg Arndt, Jan 24 2013 */
Formula
G.f.: Product_{k>=1} (1-x^k)/(1-13*x^k). - Alois P. Heinz, Nov 03 2012
Extensions
More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013