cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182607 Number of conjugacy classes in GL(n,16).

Original entry on oeis.org

1, 15, 255, 4080, 65520, 1048305, 16776960, 268431105, 4294962960, 68719407120, 1099511558160, 17592184926480, 281474975596815, 4503599609479680, 72057594020040960, 1152921504320590335, 18446744073423298800, 295147905174771671280, 4722366482865065107440
Offset: 0

Views

Author

Klaus Brockhaus, Nov 23 2010

Keywords

Crossrefs

Programs

  • Magma
    /* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 16)) : n in [1..6]];
    
  • Maple
    with(numtheory):
    b:= proc(n) b(n):= add(phi(d)*16^(n/d), d=divisors(n))/n-1 end:
    a:= proc(n) a(n):= `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012
  • Mathematica
    b[n_] := Sum[EulerPhi[d]*16^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N);
    gf=prod(n=1,N, (1-x^n)/(1-16*x^n)  );
    v=Vec(gf)
    /* Joerg Arndt, Jan 24 2013 */

Formula

G.f.: Product_{k>=1} (1-x^k)/(1-16*x^k). - Alois P. Heinz, Nov 03 2012

Extensions

More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013