A182607 Number of conjugacy classes in GL(n,16).
1, 15, 255, 4080, 65520, 1048305, 16776960, 268431105, 4294962960, 68719407120, 1099511558160, 17592184926480, 281474975596815, 4503599609479680, 72057594020040960, 1152921504320590335, 18446744073423298800, 295147905174771671280, 4722366482865065107440
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Crossrefs
Programs
-
Magma
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 16)) : n in [1..6]];
-
Maple
with(numtheory): b:= proc(n) b(n):= add(phi(d)*16^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
Mathematica
b[n_] := Sum[EulerPhi[d]*16^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1,N, (1-x^n)/(1-16*x^n) ); v=Vec(gf) /* Joerg Arndt, Jan 24 2013 */
Formula
G.f.: Product_{k>=1} (1-x^k)/(1-16*x^k). - Alois P. Heinz, Nov 03 2012
Extensions
More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013