A182616 Number of partitions of 2n that contain odd parts.
0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0
Keywords
Examples
For n=3 the partitions of 2n are 6 ....................... does not contains odd parts 3 + 3 ................... contains odd parts ........... * 4 + 2 ................... does not contains odd parts 2 + 2 + 2 ............... does not contains odd parts 5 + 1 ................... contains odd parts ........... * 3 + 2 + 1 ............... contains odd parts ........... * 4 + 1 + 1 ............... contains odd parts ........... * 2 + 2 + 1 + 1 ........... contains odd parts ........... * 3 + 1 + 1 + 1 ........... contains odd parts ........... * 2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... * 1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... * There are 8 partitions of 2n that contain odd parts. Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8. From _Gus Wiseman_, Oct 18 2023: (Start) For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are: (2) (4) (6) (8) (31) (42) (53) (1111) (51) (62) (222) (71) (411) (332) (2211) (521) (21111) (611) (111111) (2222) (3221) (3311) (5111) (22211) (32111) (221111) (311111) (2111111) (11111111) (End)
Programs
-
Maple
with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
-
Mathematica
Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *) Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
Extensions
Edited by Alois P. Heinz, Dec 03 2010
Comments