A182625 Numbers n for which Fibonacci(n) mod n is a Fibonacci number.
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 19, 20, 21, 22, 24, 25, 29, 31, 32, 33, 36, 38, 41, 42, 48, 54, 55, 56, 58, 59, 60, 61, 62, 71, 72, 76, 77, 79, 80, 82, 89, 92, 93, 95, 96, 101, 104, 105, 108, 109, 110, 118, 119, 120, 121, 122, 123, 124, 125, 131, 133, 139, 142
Offset: 1
Examples
Fibonacci(12) = 144, 144 mod 12 = 0, and 0 is a Fibonacci number. Therefore 12 is in the sequence. Fibonacci(14) = 377, 377 mod 14 = 13, and 13 is a Fibonacci number. Therefore 14 is in the sequence.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 2241 terms from Klaus Brockhaus)
Programs
-
Maple
isA000045 := proc(n) local F,i; for i from 0 do F := combinat[fibonacci](i) ; if F> n then return false; elif F = n then return true; end if; end do;end proc: isA182625 := proc(n) isA000045(combinat[fibonacci](n) mod n) ; end proc: for n from 1 to 300 do if isA182625(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 02 2011 # second Maple program: b:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= r.M mod n fi; if p=0 then break fi; M:= M.M mod n od; r[1, 2] end: a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) while (t-> not (issqr(t+4) or issqr(t-4)))(5*b(k)^2) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 26 2016
-
Mathematica
nn=12; f=Table[Fibonacci[n], {n,0,nn}]; Select[Range[f[[-1]]], MemberQ[f, Mod[Fibonacci[#],#]]&] (* T. D. Noe, Apr 02 2011 *)
-
PARI
is(n)=my(k=(fibonacci(n)%n)^2);k+=(k+1)<<2; issquare(k) || issquare(k-8) \\ Charles R Greathouse IV, Jul 30 2012