Original entry on oeis.org
1, 4, 12, 28, 60, 114, 210, 360, 603, 970, 1529, 2340, 3536, 5222, 7620, 10944, 15555, 21816, 30343, 41740, 56994, 77132, 103684, 138312, 183450, 241696, 316764, 412776, 535340, 690750, 887499, 1135072, 1446060, 1834742, 2319555, 2921616, 3667921, 4589260
Offset: 1
-
Total /@ Table[n*PartitionsP[n-k], {n, 38}, {k, n}] // Flatten (* Robert Price, Jun 23 2020 *)
-
a000070(n) = sum(k=0, n, numbpart(k));
for(n=1, 100, print1(n*a000070(n - 1), ", ")) \\ Indranil Ghosh, Jun 08 2017
-
from sympy import npartitions as p
def a000070(n): return sum([p(k) for k in range(n + 1)])
def a(n): return n*a000070(n - 1) # Indranil Ghosh, Jun 08 2017
A182700
Triangle T(n,k) = n*A000041(n-k), 0<=k<=n, read by rows.
Original entry on oeis.org
0, 1, 1, 4, 2, 2, 9, 6, 3, 3, 20, 12, 8, 4, 4, 35, 25, 15, 10, 5, 5, 66, 42, 30, 18, 12, 6, 6, 105, 77, 49, 35, 21, 14, 7, 7, 176, 120, 88, 56, 40, 24, 16, 8, 8, 270, 198, 135, 99, 63, 45, 27, 18, 9, 9, 420, 300, 220, 150, 110, 70, 50, 30, 20, 10, 10, 616, 462, 330, 242, 165, 121, 77, 55, 33
Offset: 0
For n=7 and k=4 there are 3 partitions of 7 that contain 4 as a part. These partitions are (4+3)=7, (4+2+1)=7 and (4+1+1+1)=7. The sum is 7+7+7 = 7*3 = 21. By other way, the partition number of 7-4 is A000041(3) = p(3)=3, then 7*3 = 21, so T(7,4) = 21.
Triangle begins with row n=0 and columns 0<=k<=n :
0,
1, 1,
4, 2, 2,
9, 6, 3, 3,
20,12,8, 4, 4,
35,25,15,10,5, 5,
66,42,30,18,12,6, 6
-
A182700 := proc(n,k) n*combinat[numbpart](n-k) ; end proc:
seq(seq(A182700(n,k),k=0..n),n=0..15) ;
-
Table[n*PartitionsP[n-k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert Price, Jun 23 2020 *)
-
A182700(n,k) = n*numbpart(n-k)
A182702
Triangle T(n,k) = n*(A000041(n-k)) read by rows, k>=0.
Original entry on oeis.org
1, 4, 2, 9, 6, 3, 20, 12, 8, 4, 35, 25, 15, 10, 5, 66, 42, 30, 18, 12, 6, 105, 77, 49, 35, 21, 14, 7, 176, 120, 88, 56, 40, 24, 16, 8, 270, 198, 135, 99, 63, 45, 27, 18, 9, 420, 300, 220, 150, 110, 70, 50, 30, 20, 10, 616, 462, 330, 242, 165, 121, 77, 55, 33, 22, 11
Offset: 1
Triangle begins:
1;
4, 2;
9, 6, 3;
20, 12, 8, 4;
35, 25, 15, 10, 5;
66, 42, 30, 18, 12, 6;
-
Table[n*PartitionsP[n-k], {n, 0, 11}, {k, 0, n - 1}] // Flatten (* Robert Price, Jun 23 2020 *)
-
tabl(nn) = {for (n = 1, nn, for (k = 0, n-1, print1(n*numbpart(n-k), ", ");); print(););} \\ Michel Marcus, Feb 13 2014
Original entry on oeis.org
0, 2, 8, 21, 48, 95, 180, 315, 536, 873, 1390, 2145, 3264, 4849, 7112, 10260, 14640, 20604, 28746, 39653, 54280, 73626, 99176, 132549, 176112, 232400, 305032, 398034, 516880, 667725, 858870
Offset: 0
-
Total /@ Table[n*PartitionsP[n-k], {n, 0, 30}, {k, 0, n}] (* Robert Price, Jun 23 2020 *)
Original entry on oeis.org
1, 6, 18, 44, 90, 174, 308, 528, 864, 1380, 2134, 3252, 4836, 7098, 10245, 14624, 20587, 28728, 39634, 54260, 73605, 99154, 132526, 176088, 232375, 305006, 398007, 516852, 667696, 858840
Offset: 1
-
Total /@ Table[n*PartitionsP[n-k], {n, 30}, {k, 0, n - 1}] // Flatten (* Robert Price, Jun 23 2020 *)
A228816
Sum of all parts of all partitions of n that contain 1 as a part.
Original entry on oeis.org
1, 2, 6, 12, 25, 42, 77, 120, 198, 300, 462, 672, 1001, 1414, 2025, 2816, 3927, 5346, 7315, 9800, 13167, 17424, 23046, 30120, 39375, 50908, 65772, 84280, 107822, 136950, 173724, 218944, 275517, 344862, 430850, 535788, 665149, 822206, 1014585, 1247400
Offset: 1
-
Table[Total[Flatten[Select[IntegerPartitions[n],MemberQ[#,1]&]]],{n,40}] (* Harvey P. Dale, Sep 27 2015 *)
A228823
Triangle read by rows: T(n,k) = total number of parts in all partitions of n that contain k as a part, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 1, 5, 2, 1, 9, 5, 2, 1, 17, 9, 5, 2, 1, 27, 17, 9, 5, 2, 1, 46, 27, 17, 9, 5, 2, 1, 69, 46, 27, 17, 9, 5, 2, 1, 108, 69, 46, 27, 17, 9, 5, 2, 1, 158, 108, 69, 46, 27, 17, 9, 5, 2, 1, 234, 158, 108, 69, 46, 27, 17, 9, 5, 2, 1, 331, 234, 158, 108, 69
Offset: 1
Triangle begins:
1;
2, 1;
5, 2, 1;
9, 5, 2, 1;
17, 9, 5, 2, 1;
27, 17, 9, 5, 2, 1;
46, 27, 17, 9, 5, 2, 1;
69, 46, 27, 17, 9, 5, 2, 1;
108, 69, 46, 27, 17, 9, 5, 2, 1;
158, 108, 69, 46, 27, 17, 9, 5, 2, 1;
234, 158, 108, 69, 46, 27, 17, 9, 5, 2, 1;
331, 234, 158, 108, 69, 46, 27, 17, 9, 5, 2, 1;
Showing 1-7 of 7 results.
Comments