A182713 Number of 3's in the last section of the set of partitions of n.
0, 0, 1, 0, 1, 2, 2, 3, 6, 6, 10, 14, 18, 24, 35, 42, 58, 76, 97, 124, 164, 202, 261, 329, 412, 514, 649, 795, 992, 1223, 1503, 1839, 2262, 2741, 3346, 4056, 4908, 5919, 7150, 8568, 10297, 12320, 14721, 17542, 20911, 24808, 29456, 34870, 41232, 48652, 57389
Offset: 1
Keywords
Examples
a(7) = 2 counts the 3's in 7 = 4+3 = 3+2+2. The 3's in 7 = 3+3+1 = 3+2+1+1 = 3+1+1+1+1 do not count. From _Omar E. Pol_, Oct 27 2012: (Start) -------------------------------------- Last section Number of the set of of partitions of 7 3's -------------------------------------- 7 .............................. 0 4 + 3 .......................... 1 5 + 2 .......................... 0 3 + 2 + 2 ...................... 1 . 1 .......................... 0 . 1 ...................... 0 . 1 ...................... 0 . 1 .................. 0 . 1 ...................... 0 . 1 .................. 0 . 1 .................. 0 . 1 .............. 0 . 1 .............. 0 . 1 .......... 0 . 1 ...... 0 ------------------------------------ . 5 - 3 = 2 . In the last section of the set of partitions of 7 the difference between the sum of the third column and the sum of the fourth column is 5 - 3 = 2 equaling the number of 3's, so a(7) = 2 (see also A024787). (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i<2 then [0, 0] else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i)); [g[1]+h[1], g[2]+h[2]+`if`(i=3, h[1], 0)] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..70); # Alois P. Heinz, Mar 18 2012
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 2]], {n, 0, z}] (* Clark Kimberling, Mar 31 2014 *) b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; Join[g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i == 3, h[[1]], 0]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Nov 30 2015, after Alois P. Heinz *) Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 3], {n, 51}] (* Robert Price, May 15 2020 *)
-
Sage
A182713 = lambda n: sum(list(p).count(3) for p in Partitions(n) if 1 not in p) # D. S. McNeil, Nov 29 2010
Formula
It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3), n >= 0. - Omar E. Pol, Feb 04 2012
a(n) ~ A000041(n)/3 ~ exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n). - Vaclav Kotesovec, Jan 03 2019
Comments