A182754 a(1) = 1, a(2) = 21, a(n) = 77*a(n-2) for n>=3.
1, 21, 77, 1617, 5929, 124509, 456533, 9587193, 35153041, 738213861, 2706784157, 56842467297, 208422380089, 4376869981869, 16048523266853, 337018988603913, 1235736291547681, 25950462122501301, 95151694449171437, 1998185583432600177, 7326680472586200649
Offset: 1
Examples
For n = 4; a(2) = 21, a(3) = 77, a(4) = 1617 before [(21+77)*(21+1617)*(77+1617)] / (21*77*1617) = 104.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,77).
Programs
-
Magma
I:=[1,21]; [n le 2 select I[n] else 77*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
-
Mathematica
LinearRecurrence[{0,77},{1,21},30] (* Harvey P. Dale, Sep 05 2013 *)
-
PARI
A182754(n)=if(n%2,77^(n\2),77^(n\2-1)*21)
-
PARI
Vec(x*(1 + 21*x) / (1 - 77*x^2) + O(x^40)) \\ Colin Barker, Jan 11 2018
-
Python
def aupton(nn): dmo = [1, 21, 77] for n in range(3, nn+1): dmo.append(77*dmo[-2]) return dmo[:nn] print(aupton(21)) # Michael S. Branicky, Jan 21 2021
Formula
a(2*n) = 21*a(2*n-1), a(2*n+1) = (11/3)*a(2*n).
G.f.: x*(1+21*x) / ( 1 - 77*x^2 ).
From Colin Barker, Jan 11 2018: (Start)
a(n) = 3*7^(n/2)*11^(n/2-1) for n even.
a(n) = 77^((n-1)/2) for n odd. (End)
Extensions
More terms from Harvey P. Dale, Sep 05 2013
Comments