A182788 Number of n-colorings of the 3 X 3 X 3 triangular grid.
0, 0, 0, 6, 192, 1620, 7680, 26250, 72576, 172872, 368640, 721710, 1320000, 2283996, 3773952, 5997810, 9219840, 13770000, 20054016, 28564182, 39890880, 54734820, 73920000, 98407386, 129309312, 167904600, 215654400, 274218750, 345473856
Offset: 0
References
- Burkard Polster and Marty Ross, Math Goes to the Movies, The Johns Hopkins University Press, Baltimore, 2013, ยง1.10 Mathematics: Graph Theory 3, pp. 16-17.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Chromatic polynomial
- Wikipedia, Triangular grid graph
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Maple
a:= n-> n*(n-1)*(n-2)^4: seq(a(n), n=0..30);
-
Mathematica
Table[n(n-1)(n-2)^4,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,0,0,6,192,1620,7680},30] (* Harvey P. Dale, Dec 10 2011 *)
-
PARI
a(n)=n*(n-1)*(n-2)^4 \\ Charles R Greathouse IV, Jun 22 2016
Formula
a(n) = n*(n-1)*(n-2)^4.
G.f.: 6*x^3*(1 + 25*x + 67*x^2 + 27*x^3) / (1-x)^7.
a(0)=0, a(1)=0, a(2)=0, a(3)=6, a(4)=192, a(5)=1620, a(6)=7680, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). - Harvey P. Dale, Dec 10 2011
Comments