cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182788 Number of n-colorings of the 3 X 3 X 3 triangular grid.

Original entry on oeis.org

0, 0, 0, 6, 192, 1620, 7680, 26250, 72576, 172872, 368640, 721710, 1320000, 2283996, 3773952, 5997810, 9219840, 13770000, 20054016, 28564182, 39890880, 54734820, 73920000, 98407386, 129309312, 167904600, 215654400, 274218750, 345473856
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2010

Keywords

Comments

The 3 X 3 X 3 triangular grid has 3 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 6 vertices and 9 edges altogether.

References

  • Burkard Polster and Marty Ross, Math Goes to the Movies, The Johns Hopkins University Press, Baltimore, 2013, ยง1.10 Mathematics: Graph Theory 3, pp. 16-17.

Crossrefs

Programs

  • Maple
    a:= n-> n*(n-1)*(n-2)^4: seq(a(n), n=0..30);
  • Mathematica
    Table[n(n-1)(n-2)^4,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,0,0,6,192,1620,7680},30] (* Harvey P. Dale, Dec 10 2011 *)
  • PARI
    a(n)=n*(n-1)*(n-2)^4 \\ Charles R Greathouse IV, Jun 22 2016

Formula

a(n) = n*(n-1)*(n-2)^4.
G.f.: 6*x^3*(1 + 25*x + 67*x^2 + 27*x^3) / (1-x)^7.
a(0)=0, a(1)=0, a(2)=0, a(3)=6, a(4)=192, a(5)=1620, a(6)=7680, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). - Harvey P. Dale, Dec 10 2011