cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182821 Expansion of g.f.: exp( Sum_{n>=1} sigma(5*n)*x^n/n ).

Original entry on oeis.org

1, 6, 27, 98, 315, 917, 2486, 6345, 15427, 35965, 80897, 176296, 373652, 772381, 1561130, 3091476, 6008896, 11480887, 21591830, 40016045, 73157052, 132052382, 235535752, 415433365, 725043875, 1252857043, 2144601961, 3638413830
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(5*n) = A000203(5*n), the sum of divisors of 5n.
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + ...
log(A(x)) = 6*x + 18*x^2/2 + 24*x^3/3 + 42*x^4/4 + 31*x^5/5 + 72*x^6/6 + 48*x^7/7 + 90*x^8/8 + ... + sigma(5n)*x^n/n + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^k: A035959 (k=1), A160461 (k=2), A277212 (k=5),
this sequence (k=6).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(5*j))/(1 - x^j)^6: j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(5*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    default(seriesprecision,66); Vec(eta(x^5)/eta(x)^6) \\ Joerg Arndt, Dec 05 2010
    
  • PARI
    m=30; x='x+O('x^m); Vec(prod(j=1,m+2, (1 - x^(5*j))/(1 - x^j)^6)) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(30)
    s = prod((1 - x^(5*j))/(1 - x^j)^6 for j in (1..32))
    list(s) # G. C. Greubel, Nov 18 2018

Formula

G.f.: A(x) = E(x^5)/E(x)^6 where E(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Dec 05 2010
a(n) ~ 29^(3/2) * exp(sqrt(58*n/15)*Pi) / (2400*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 28 2016
A(x^5) = P(x)*P(a*x)*P(a^2*x)*P(a^3*x)*P(a^4*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n), and where a = exp(2*Pi*i/5) is a primitive fifth root of unity. - Peter Bala, Jan 24 2017