cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182944 Square array A(i,j), i >= 1, j >= 1, of prime powers prime(i)^j, by descending antidiagonals.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 7, 32, 81, 125, 49, 11, 64, 243, 625, 343, 121, 13, 128, 729, 3125, 2401, 1331, 169, 17, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2010

Keywords

Comments

We alternatively refer to this sequence as a triangle T(.,.), with T(n,k) = A(k,n-k+1) = prime(k)^(n-k+1).
The monotonic ordering of this sequence, prefixed by 1, is A000961.
The joint-rank array of this sequence is A182869.
Main diagonal gives A062457. - Omar E. Pol, Sep 11 2018

Examples

			Square array A(i,j) begins:
  i \ j: 1      2      3      4      5  ...
  ---\-------------------------------------
  1:     2,     4,     8,    16,    32, ...
  2:     3,     9,    27,    81,   243, ...
  3:     5,    25,   125,   625,  3125, ...
  4:     7,    49,   343,  2401, 16807, ...
  ...
The triangle T(n,k) begins:
  n\k:  1     2     3     4     5     6  ...
  1:    2
  2:    4     3
  3:    8     9     5
  4:   16    27    25     7
  5:   32    81   125    49    11
  6:   64   243   625   343   121    13
  ...
		

Crossrefs

Cf. A000961, A006939 (row products of triangle), A062457, A182945, A332979 (row maxima of triangle).
Columns: A000040 (1), A001248 (2), A030078 (3), A030514 (4), A050997 (5), A030516 (6), A092759 (7), A179645 (8), A179665 (9), A030629 (10).
A319075 extends the array with 0th powers.
Subtable of A242378, A284457, A329332.

Programs

  • Mathematica
    TableForm[Table[Prime[n]^j,{n,1,14},{j,1,8}]]

Formula

From Peter Munn, Dec 29 2019: (Start)
A(i,j) = A182945(j,i) = A319075(j,i).
A(i,j) = A242378(i-1,2^j) = A329332(2^(i-1),j).
A(i,i) = A062457(i).
(End)

Extensions

Clarified in respect of alternate reading as a triangle by Peter Munn, Aug 28 2022

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A332979 Largest integer m satisfying Omega(m) + pi(gpf(m)) - [m<>1] = n.

Original entry on oeis.org

1, 2, 4, 9, 27, 125, 625, 3125, 16807, 161051, 1771561, 19487171, 214358881, 2357947691, 25937424601, 285311670611, 3138428376721, 34522712143931, 582622237229761, 9904578032905937, 168377826559400929, 2862423051509815793, 48661191875666868481
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2020

Keywords

Comments

From Michael De Vlieger, Aug 22 2022: (Start)
Subset of A000961.
Maxima of row n of A005940.
Maxima of row n of A182944 and row n of A182945. (End)

Crossrefs

Cf. A000720 (pi), A001222 (Omega), A006530 (GPF), A011782, A060576 ([n<>1]), A061395 (pi(gpf(n))), A332977.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, max(seq(b(n-
         `if`(i=0, j, 1), j)*ithprime(j), j=1..`if`(i=0, n, i))))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Max[Table[
         b[n - If[i == 0, j, 1], j] Prime[j], {j, 1, If[i == 0, n, i]}]]];
    a[n_] := b[n, 0];
    a /@ Range[0, 23] (* Jean-François Alcover, May 03 2021, after Alois P. Heinz *)
    (* Second program: extract data from the concise a-file of 10000 terms: *)
    With[{nn = 23 (* set nn <= 10000 as desired *)}, Prime[#1]^#2 & @@ # & /@ Map[ToExpression /@ {StringTrim[#1, "p"], #2} & @@ StringSplit[#, "^"] &, Import["https://oeis.org/A332979/a332979.txt", "Data"][[1 ;; nn, -1]] ] ] (* Michael De Vlieger, Aug 22 2022 *)

Formula

a(n) = A332977(A011782(n)).

A356627 Primes whose powers appear in A332979.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 29, 37, 41, 59, 67, 71, 97, 127, 149, 191, 223, 269, 307, 347, 419, 431, 557, 563, 569, 587, 593, 599, 641, 727, 809, 937, 967, 1009, 1213, 1277, 1423, 1861, 1973, 2237, 2267, 2657, 3163, 3299, 3449, 3457, 3527, 3907, 4001, 4211, 4441, 4637
Offset: 1

Views

Author

Michael De Vlieger, Sep 27 2022

Keywords

Comments

Maxima of row n > 0 of A005940, A182944, and A182945 are powers of these primes.
Indices k of primes, A000040(k), listed here show an interesting correlation with the function f(k) = A000040(k) - A302334(k). - Peter Munn, Sep 29 2022

Examples

			5 | A332979(5..7), thus 5 is in the sequence.
7 | A332979(8), thus 7 is in the sequence.
13 does not divide any term in A332979, so it is not a term in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Prime@ Union@ Table[MaximalBy[Table[{k, n - k}, {k, n}], Prime[#1]^#2 & @@ # &][[1, 1]], {n, 2^10}]
    (* or use concise file in A332979 *)
    Prime /@ Union@ Rest@ Map[ToExpression@ StringTrim[#, "p"] & @@ StringSplit[#, "^"] &, Import["https://oeis.org/A332979/a332979.txt", "Data"][[All, -1]]]
Showing 1-4 of 4 results.