cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A182945 Array of prime powers p^j, as transpose of A182944.

Original entry on oeis.org

2, 3, 4, 5, 9, 8, 7, 25, 27, 16, 11, 49, 125, 81, 32, 13, 121, 343, 625, 243, 64, 17, 169, 1331, 2401, 3125, 729, 128, 19, 289, 2197, 14641, 16807, 15625, 2187, 256, 23, 361, 4913, 28561, 161051, 117649, 78125, 6561, 512, 29, 529, 6859, 83521, 371293, 1771561, 823543, 390625, 19683, 1024
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2010

Keywords

Comments

The monotonic ordering of this sequence, with 1 prefixed, is A000961.
The joint-rank array of this sequence is A182869.

Examples

			Northwest corner:
   2    3     5     7
   4    9    25    49
   8   27   125   343
  16   81   625  2401
		

Crossrefs

Cf. A000961, A182944, A000040 (row 1), A001248 (row 2), A030078 (row 3).
Antidiagonal products give A006939.
Cf. A319075 (extends the array with 0th powers).

Programs

  • Magma
    [NthPrime(n-i)^i: i in [1..n-1], n in [2..15]]; // Vincenzo Librandi, Jul 28 2015
  • Maple
    seq(seq(ithprime(n-i)^i,i=1..n-1),n=2..20); # Robert Israel, Jul 27 2015
  • Mathematica
    width=9;Table[Table[Prime[n]^j,{n,1,width},{j,1,width}]]; Flatten[Table[Table[%[[z-k+1]][[k]],{k,1,z}],{z,1,width}]]

A062457 a(n) = prime(n)^n.

Original entry on oeis.org

2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Comments

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 14 2018
Main diagonal of A182944. - Omar E. Pol, Sep 12 2018
Second diagonal of A319075. - Omar E. Pol, Sep 13 2018

Crossrefs

Programs

Formula

a(n) = A062006(n) - 1. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A093358.
Sum_{n>=1} (-1)^(n+1)/a(n) = A201614. (End)

A329332 Table of powers of squarefree numbers, powers of A019565(n) in increasing order in row n. Square array A(n,k) n >= 0, k >= 0 read by descending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 6, 1, 1, 16, 27, 36, 5, 1, 1, 32, 81, 216, 25, 10, 1, 1, 64, 243, 1296, 125, 100, 15, 1, 1, 128, 729, 7776, 625, 1000, 225, 30, 1, 1, 256, 2187, 46656, 3125, 10000, 3375, 900, 7, 1, 1, 512, 6561, 279936, 15625, 100000, 50625, 27000, 49, 14
Offset: 0

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

The A019565 row order gives the table neat relationships with A003961, A003987, A059897, A225546, A319075 and A329050. See the formula section.
Transposition of this table, that is reflection about its main diagonal, has subtle symmetries. For example, consider the unique factorization of a number into powers of distinct primes. This can be restated as factorization into numbers from rows 2^n (n >= 0) with no more than one from each row. Reflecting about the main diagonal, this factorization becomes factorization (of a related number) into numbers from columns 2^k (k >= 0) with no more than one from each column. This is also unique and is factorization into powers of squarefree numbers with distinct exponents that are powers of two. See the example section.

Examples

			Square array A(n,k) begins:
n\k |  0   1     2      3        4          5           6             7
----+------------------------------------------------------------------
   0|  1   1     1      1        1          1           1             1
   1|  1   2     4      8       16         32          64           128
   2|  1   3     9     27       81        243         729          2187
   3|  1   6    36    216     1296       7776       46656        279936
   4|  1   5    25    125      625       3125       15625         78125
   5|  1  10   100   1000    10000     100000     1000000      10000000
   6|  1  15   225   3375    50625     759375    11390625     170859375
   7|  1  30   900  27000   810000   24300000   729000000   21870000000
   8|  1   7    49    343     2401      16807      117649        823543
   9|  1  14   196   2744    38416     537824     7529536     105413504
  10|  1  21   441   9261   194481    4084101    85766121    1801088541
  11|  1  42  1764  74088  3111696  130691232  5489031744  230539333248
  12|  1  35  1225  42875  1500625   52521875  1838265625   64339296875
Reflection of factorization about the main diagonal: (Start)
The canonical (prime power) factorization of 864 is 2^5 * 3^3 = 32 * 27. Reflecting the factors about the main diagonal of the table gives us 10 * 36 = 10^1 * 6^2 = 360. This is the unique factorization of 360 into powers of squarefree numbers with distinct exponents that are powers of two.
Reflection about the main diagonal is given by the self-inverse function A225546(.). Clearly, all positive integers are in the domain of A225546, whether or not they appear in the table. It is valid to start from 360, observe that A225546(360) = 864, then use 864 to derive 360's factorization into appropriate powers of squarefree numbers as above.
(End)
		

Crossrefs

The range of values is A072774.
Rows (abbreviated list): A000079(1), A000244(2), A000400(3), A000351(4), A011557(5), A001024(6), A009974(7), A000420(8), A001023(9), A009965(10), A001020(16), A001022(32), A001026(64).
A019565 is column 1, A334110 is column 2, and columns that are sorted in increasing order (some without the 1) are: A005117(1), A062503(2), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7).
Other subtables: A182944, A319075, A329050.
Re-ordered subtable of A297845, A306697, A329329.
A000290, A003961, A003987, A059897 and A225546 are used to express relationships between terms of this sequence.
Cf. A285322.

Formula

A(n,k) = A019565(n)^k.
A(k,n) = A225546(A(n,k)).
A(n,2k) = A000290(A(n,k)) = A(n,k)^2.
A(2n,k) = A003961(A(n,k)).
A(n,2k+1) = A(n,2k) * A(n,1).
A(2n+1,k) = A(2n,k) * A(1,k).
A(A003987(n,m), k) = A059897(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A059897(A(n,m), A(n,k)).
A(2^n,k) = A319075(k,n+1).
A(2^n, 2^k) = A329050(n,k).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)), = A329329(A(n,1), A(1,k)).
Sum_{n>=0} 1/A(n,k) = zeta(k)/zeta(2*k), for k >= 2. - Amiram Eldar, Dec 03 2022

A329050 Square array A(n,k) = prime(n+1)^(2^k), read by descending antidiagonals (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...; Fermi-Dirac primes (A050376) in matrix form, sorted into rows by their prime divisor.

Original entry on oeis.org

2, 4, 3, 16, 9, 5, 256, 81, 25, 7, 65536, 6561, 625, 49, 11, 4294967296, 43046721, 390625, 2401, 121, 13, 18446744073709551616, 1853020188851841, 152587890625, 5764801, 14641, 169, 17, 340282366920938463463374607431768211456, 3433683820292512484657849089281, 23283064365386962890625, 33232930569601, 214358881, 28561, 289, 19
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, Nov 02 2019

Keywords

Comments

This sequence is a permutation of A050376, so every positive integer is the product of a unique subset, S_factors, of its terms. If we restrict S_factors to be chosen from a subset, S_0, consisting of numbers from specified rows and/or columns of this array, there are notable sequences among those that may be generated. See the examples. Other notable sequences can be generated if we restrict the intersection of S_factors with specific rows/columns to have even cardinality. In any of the foregoing cases, the numbers in the resulting sequence form a group under the binary operation A059897(.,.).
Shares with array A246278 the property that columns grow downward by iterating A003961, and indeed, this array can be obtained from A246278 by selecting its columns 1, 2, 8, 128, ..., 2^((2^k)-1), for k >= 0.
A(n,k) is the image of the lattice point with coordinates X=n and Y=k under the inverse of the bijection f defined in the first comment of A306697. This geometric relationship can be used to construct an isomorphism from the polynomial ring GF(2)[x,y] to a ring over the positive integers, using methods similar to those for constructing A297845 and A306697. See A329329, the ring's multiplicative operator, for details.

Examples

			The top left 5 X 5 corner of the array:
  n\k |   0     1       2           3                   4
  ----+-------------------------------------------------------
   0  |   2,    4,     16,        256,              65536, ...
   1  |   3,    9,     81,       6561,           43046721, ...
   2  |   5,   25,    625,     390625,       152587890625, ...
   3  |   7,   49,   2401,    5764801,     33232930569601, ...
   4  |  11,  121,  14641,  214358881,  45949729863572161, ...
Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on.
Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences:
Row 1:                 A000244 Powers of 3.
Column 1:              A062503 Squares of squarefree numbers.
Row 2:                 A000351 Powers of 5.
Column 2:              A113849 4th powers of squarefree numbers.
Union of rows 0 and 1:     A003586 3-smooth numbers.
Union of columns 0 and 1:  A046100 Biquadratefree numbers.
Union of row 0 / column 0: A122132 Oddly squarefree numbers.
Row 0 excluding column 0:  A000302 Powers of 4.
Column 0 excluding row 0:  A056911 Squarefree odd numbers.
All rows except 0:         A005408 Odd numbers.
All columns except 0:      A000290\{0} Positive squares.
All rows except 1:         A001651 Numbers not divisible by 3.
All columns except 1:      A252895 (have odd number of square divisors).
If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
		

Crossrefs

Transpose: A329049.
Permutation of A050376.
Rows 1-4: A001146, A011764, A176594, A165425 (after the two initial terms).
Antidiagonal products: A191555.
Subtable of A182944, A242378, A246278, A329332.
A000290, A003961, A225546 are used to express relationship between terms of this sequence.
Related binary operations: A059897, A306697, A329329.
See also the table in the example section.

Programs

  • Mathematica
    Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    up_to = 105;
    A329050sq(n,k) = (prime(1+n)^(2^k));
    A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); };
    v329050 = A329050list(up_to);
    A329050(n) = v329050[1+n];
    for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019

Formula

A(0,k) = 2^(2^k), and for n > 0, A(n,k) = A003961(A(n-1,k)).
A(n,k) = A182944(n+1,2^k).
A(n,k) = A329332(2^n,2^k).
A(k,n) = A225546(A(n,k)).
A(n,k+1) = A000290(A(n,k)) = A(n,k)^2.

Extensions

Example annotated for clarity by Peter Munn, Feb 12 2020

A284457 Square array whose rows list numbers with the same squarefree kernel (A007947): Transpose of A284311.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
Offset: 1

Views

Author

Bob Selcoe, Mar 27 2017

Keywords

Comments

The first column contains the squarefree numbers A005117; each row lists all numbers having the same prime divisors. If T[m,1] is prime then the row contains the powers of that prime. Yields A182944 if only these rows with prime powers (A000961) are kept. - M. F. Hasler, Mar 27 2017
See A284311 for further details.

Examples

			Array starts:
    2    4     8     16      32      64      128
    3    9    27     81     243     729     2187
    5   25   125    625    3125   15625    78125
    6   12    18     24      36      48       54
    7   49   343   2401   16807  117649   823543
   10   20    40     50      80     100      160
   ...
Row 6 is: T[1,6] = 2*5; T[2,6] = 2^2*5; T[3,6] = 2^3*5; T[4,6] = 2*5^2; T[5,6] = 2^4*5, etc.
		

Crossrefs

Cf. A008479 (index of the column where n is located), A285329 (of the row).

Programs

  • Mathematica
    f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs@ k, While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
  • PARI
    A284457(m,n)={for(a=2,m^2+1,(core(a)!=a||m--)&&next;m=factor(a)[,1]; for(k=1,9e9,factor(k*a)[,1]==m&&!n--&&return(k*a)))} \\ M. F. Hasler, Mar 27 2017
    
  • Scheme
    (define (A284457 n) (A284311bi (A004736 n) (A002260 n))) ;; For A284311bi, see A284311. - Antti Karttunen, Apr 17 2017

Formula

From Antti Karttunen, Apr 17 2017: (Start)
A(n,1) = A005117(1+n), A(n,k) = A065642(A(n,k-1)). [A "dispersion" of A065642.]
A(A285329(n), A008479(n)) = n for all n >= 2.(End)

Extensions

Edited by M. F. Hasler, Mar 27 2017

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A332979 Largest integer m satisfying Omega(m) + pi(gpf(m)) - [m<>1] = n.

Original entry on oeis.org

1, 2, 4, 9, 27, 125, 625, 3125, 16807, 161051, 1771561, 19487171, 214358881, 2357947691, 25937424601, 285311670611, 3138428376721, 34522712143931, 582622237229761, 9904578032905937, 168377826559400929, 2862423051509815793, 48661191875666868481
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2020

Keywords

Comments

From Michael De Vlieger, Aug 22 2022: (Start)
Subset of A000961.
Maxima of row n of A005940.
Maxima of row n of A182944 and row n of A182945. (End)

Crossrefs

Cf. A000720 (pi), A001222 (Omega), A006530 (GPF), A011782, A060576 ([n<>1]), A061395 (pi(gpf(n))), A332977.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, max(seq(b(n-
         `if`(i=0, j, 1), j)*ithprime(j), j=1..`if`(i=0, n, i))))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Max[Table[
         b[n - If[i == 0, j, 1], j] Prime[j], {j, 1, If[i == 0, n, i]}]]];
    a[n_] := b[n, 0];
    a /@ Range[0, 23] (* Jean-François Alcover, May 03 2021, after Alois P. Heinz *)
    (* Second program: extract data from the concise a-file of 10000 terms: *)
    With[{nn = 23 (* set nn <= 10000 as desired *)}, Prime[#1]^#2 & @@ # & /@ Map[ToExpression /@ {StringTrim[#1, "p"], #2} & @@ StringSplit[#, "^"] &, Import["https://oeis.org/A332979/a332979.txt", "Data"][[1 ;; nn, -1]] ] ] (* Michael De Vlieger, Aug 22 2022 *)

Formula

a(n) = A332977(A011782(n)).

A329637 Square array A(n, k) = A329644(prime(n)^k), read by falling antidiagonals: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

Original entry on oeis.org

1, 1, 1, 4, -1, 1, 0, 4, -5, 1, 24, -16, 4, -13, 1, -8, 40, -48, 4, -29, 1, 104, -88, 72, -112, 4, -61, 1, -48, 184, -248, 136, -240, 4, -125, 1, 352, -400, 344, -568, 264, -496, 4, -253, 1, 80, 544, -1104, 664, -1208, 520, -1008, 4, -509, 1, 1424, -784, 928, -2512, 1304, -2488, 1032, -2032, 4, -1021, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2019

Keywords

Examples

			The top left corner of the array:
   n   p_n |k=1,     2, 3,      4,     5,      6,     7,       8,      9,      10
  ---------+----------------------------------------------------------------------
   1 ->  2 |  1,     1, 4,      0,    24,     -8,   104,     -48,    352,      80,
   2 ->  3 |  1,    -1, 4,    -16,    40,    -88,   184,    -400,    544,    -784,
   3 ->  5 |  1,    -5, 4,    -48,    72,   -248,   344,   -1104,    928,   -2512,
   4 ->  7 |  1,   -13, 4,   -112,   136,   -568,   664,   -2512,   1696,   -5968,
   5 -> 11 |  1,   -29, 4,   -240,   264,  -1208,  1304,   -5328,   3232,  -12880,
   6 -> 13 |  1,   -61, 4,   -496,   520,  -2488,  2584,  -10960,   6304,  -26704,
   7 -> 17 |  1,  -125, 4,  -1008,  1032,  -5048,  5144,  -22224,  12448,  -54352,
   8 -> 19 |  1,  -253, 4,  -2032,  2056, -10168, 10264,  -44752,  24736, -109648,
   9 -> 23 |  1,  -509, 4,  -4080,  4104, -20408, 20504,  -89808,  49312, -220240,
  10 -> 29 |  1, -1021, 4,  -8176,  8200, -40888, 40984, -179920,  98464, -441424,
  11 -> 31 |  1, -2045, 4, -16368, 16392, -81848, 81944, -360144, 196768, -883792,
		

Crossrefs

Rows 1-2: A329891, A329892 (from n>=1).
Column 1: A000012, Column 2: -A036563(n) (from n>=1), Column 3: A010709.

Programs

  • PARI
    up_to = 105;
    A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1));
    A329637sq(n,k) = ((2^(n+k-1)) - (((2^n)-1) * A329890(k)));
    A329637list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A329637sq(col,(a-(col-1))))); (v); };
    v329637 = A329637list(up_to);
    A329637(n) = v329637[n];

Formula

A(n, k) = A329644(A182944(n, k)).
A(n, k) = A000079(n+k-1) - (A000225(n) * A329890(k)).

A320775 a(n) is the least exponent k greater than 1 such that prime(n)^k starts and ends in prime(n).

Original entry on oeis.org

21, 41, 24, 33, 171, 361, 461, 471, 1281, 1091, 231, 221, 236, 61, 861, 2761, 241, 546, 3261, 1991, 6081, 421, 9541, 5731, 4461, 1621, 21501, 10381, 5051, 1301, 16301, 30051, 18601, 13601, 3171, 8991, 7561, 3201, 33501, 8701, 17351, 5601, 13551, 901, 10301, 871
Offset: 1

Views

Author

Paolo P. Lava, Dec 03 2018

Keywords

Comments

a(n) always exists. Let p be a prime other than 2 or 5, and m its length in base 10. Let r be the multiplicative order of p mod 10^m. Then p^k ends in p if and only if k-1 is a multiple of r. p^(j*r+1) starts with p if and only if for some integer s, s + log_10(p)) <= (j*r+1)*log_10(p) < s + frac(log_10(p+1)). This is true for some j because r*log_10(p) is irrational and the fractional parts of the multiples of an irrational number are dense in [0,1]. - Robert Israel, Dec 12 2018
If all integers are considered instead of only primes, not all of them can satisfy the requirement. For instance see A075823 for two digits numbers.
Record values beyond 10^5 are: a(51) = 138801, a(74) = 193701, a(88) = 1766101. Also, a(98) = 282076 and a(100) = 438501 would be record values if not preceded by a(88). - M. F. Hasler, Dec 14 2018

Examples

			2^21 = 2097152 and 21 is the least exponent;
3^41 = 36472996377170786403 and 41 is the least exponent.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p, k,m,q,r;
      p:= ithprime(n);
      m:= ilog10(p)+1;
      q:= numtheory:-order(p,10^m);
      for k from q+1 by q do
        r:= p^k;
        if p = floor(r/10^(ilog10(r)+1-m))
          then return k
        fi;
      od
    end proc:
    f(1):= 21: f(3):= 24:
    map(f, [$1..50]); # Robert Israel, Dec 12 2018
  • Mathematica
    a[p_] := Module[{d=IntegerDigits[p]}, nd=Length[d];k=2; While[IntegerDigits[p^k][[1;;nd]] != d || IntegerDigits[p^k][[-nd;;-1]] != d, k++]; k]; a/@Prime@Range@10 (* Amiram Eldar, Dec 10 2018 *)
  • PARI
    isokd(d, dpk) = {for (i=1, #d, if (dpk[i] != d[i], return (0));); return (1);}
    isok(p, k) = {my(dpk=digits(p^k), d = digits(p)); if (!isokd(d, dpk), return (0)); isokd(Vecrev(d), Vecrev(dpk));}
    a(n) = {my(k=2, p = prime(n)); while (!isok(p, k), k++); k;} \\ Michel Marcus, Dec 10 2018
    
  • PARI
    apply( {A320775(n, d=logint(n=prime(n), 10)+1, K=if(n>5||n==3,znorder(Mod(n, 10^d)),n+18), f(x)=x\10^(logint(x, 10)+1-d))=forstep(k=1+K,oo,K, n==f(n^k)&&return(k))}, [1..20]) \\ Define A320775 & test it via apply(). - M. F. Hasler, Dec 10 2018

A356627 Primes whose powers appear in A332979.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 29, 37, 41, 59, 67, 71, 97, 127, 149, 191, 223, 269, 307, 347, 419, 431, 557, 563, 569, 587, 593, 599, 641, 727, 809, 937, 967, 1009, 1213, 1277, 1423, 1861, 1973, 2237, 2267, 2657, 3163, 3299, 3449, 3457, 3527, 3907, 4001, 4211, 4441, 4637
Offset: 1

Views

Author

Michael De Vlieger, Sep 27 2022

Keywords

Comments

Maxima of row n > 0 of A005940, A182944, and A182945 are powers of these primes.
Indices k of primes, A000040(k), listed here show an interesting correlation with the function f(k) = A000040(k) - A302334(k). - Peter Munn, Sep 29 2022

Examples

			5 | A332979(5..7), thus 5 is in the sequence.
7 | A332979(8), thus 7 is in the sequence.
13 does not divide any term in A332979, so it is not a term in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Prime@ Union@ Table[MaximalBy[Table[{k, n - k}, {k, n}], Prime[#1]^#2 & @@ # &][[1, 1]], {n, 2^10}]
    (* or use concise file in A332979 *)
    Prime /@ Union@ Rest@ Map[ToExpression@ StringTrim[#, "p"] & @@ StringSplit[#, "^"] &, Import["https://oeis.org/A332979/a332979.txt", "Data"][[All, -1]]]
Showing 1-10 of 11 results. Next