A356626 Position of A332979(n) in the Doudna sequence A005940.
1, 2, 4, 7, 15, 29, 61, 125, 249, 497, 1009, 2033, 4081, 8177, 16369, 32753, 65521, 131057, 262081, 524225, 1048513, 2097089, 4194241, 8388545, 16777153, 33553921, 67108353, 134217217, 268434945, 536870401, 1073741313, 2147483137, 4294966785, 8589934081, 17179868673
Offset: 0
Keywords
Examples
A332979(3) = 9 = 3^2, therefore a(3) = 2^3-2^(pi(3)-1)+1 = 2^3-2^1+1 = 8-2+1 = 7. A332979(8) = 16807 = 7^5, therefore a(8) = 2^8-2^(pi(7)-1)+1 = 2^8-2^3+1 = 249.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3321
- Michael De Vlieger, Fan style binary tree showing row m = 2..15 of A005940, highlighting A332979(m-1) in red.
Programs
-
Mathematica
{1}~Join~Table[2^n - 2^(# - 1) + 1 &[FirstPosition[#, Max[#]][[1]]] &@ Thread[Power[Prime[#], Reverse[#] ] ] &@ Range[n], {n, 34}]
Formula
a(0) = 1; a(n) = 2^n - 2^(pi(p)-1) + 1 for A332979(n) = p^e and n>1.
Comments