A182979 Fermi-Dirac representation of n. Let n have factorization p1^(2^e1) * p2^(2^e2) * ... * pr^(2^er), where each factor is in A050376. The number n is represented by a binary string that indicates which terms of A050376 appear in the factorization of n.
0, 1, 10, 100, 1000, 11, 10000, 101, 100000, 1001, 1000000, 110, 10000000, 10001, 1010, 100000000, 1000000000, 100001, 10000000000, 1100, 10010, 1000001, 100000000000, 111, 1000000000000, 10000001, 100010, 10100, 10000000000000, 1011, 100000000000000, 100000001, 1000010, 1000000001, 11000, 100100
Offset: 1
Keywords
Examples
"Fermi-Dirac factorizations" (cf. A050376 examples, here with exponents of "Fermi-Dirac primes" being either 0 or 1): 6 = 3*2 = 3^1*2^1, so a(6) = 11; 8 = 4*2 = 4^1*3^0*2^1, so a(8) = 101; 20 = 5*4 = 5^1*4^1*3^0*2^0, so a(20) = 1100; 24 = 4*3*2 = 4^1*3^1*2^1, so a(24) = 111; 27 = 9*3 = 9^1*7^0*5^0*4^0*3^1*2^0, so a(27) = 100010; 32 = 16*2 = 16^1*13^0*11^0*9^0*7^0*5^0*4^0*3^0*2^1, so a(32) = 100000001; 64 = 16*4 = 16^1*13^0*11^0*9^0*7^0*5^0*4^1*3^0*2^0, so a(64) = 100000100; 108 = 9*4*3 = 9^1*7^0*5^0*4^1*3^1*2^0, so a(108) = 100110; 120 = 5*4*3*2 = 5^1*4^1*3^1*2^1, so a(120) = 1111; ...
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- OEIS Wiki, "Fermi-Dirac representation" of n
- OEIS Wiki, Ordering of positive integers by increasing "Fermi-Dirac representation"
Programs
-
Mathematica
nn=24; p=Select[Range[nn], PrimeQ]; Do[p=Select[Union[p,p^2], #<=nn&], {Floor[Log[2,Log[2,nn]]]}]; Table[m=n; FromDigits[Table[If[Mod[m,i]==0, m=m/i; 1, 0], {i,Reverse[p]}]],{n,nn}]
Formula
Let q_1,q_2,q_3,... be consecutive terms of A050376 and n = q_1^a_1 * q_2^a_2 *...* q_r^a_r, where a_i = 0 or 1. Then a(n) = a_1 + 10*a_2 + ... +10^(r-1)*a_r. For example, since 30 = 2^1 * 3^1 * 4^0 * 5^1, then a(30)= 1 + 10 + 1000 = 1011. - Vladimir Shevelev, Nov 02 2013
Extensions
Clearer definition from T. D. Noe, Feb 11 2011
Edited by N. J. A. Sloane, Jul 21 2018
Comments