cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183097 a(n) = sum of powerful divisors d (including 1) of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 61, 1, 50, 10, 130
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A091051(n); a(72) = 130, A091051(72) = 58.
a(n) = sum of divisors d of n from set A001694 - powerful numbers.

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1+4 = 5.
		

Crossrefs

Programs

  • Maple
    A183097 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a* ( (p^(e+1)-1)/(p-1)-p) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 02 2020
  • Mathematica
    fun[p_,e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A183097(n) = sumdiv(n, d, ispowerful(d)*d); \\ Antti Karttunen, Oct 07 2017
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2]+1)-1) / (f[i,1]-1) - f[i,1]);} \\ Amiram Eldar, Dec 24 2023

Formula

a(n) = A000203(n) - A183098(n) = A183100(n) + 1.
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = ((p^(k+1)-1) / (p-1))-p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
From Amiram Eldar, Dec 24 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(3*s-3) / zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)^2/(3*zeta(3)) = 1.892451... . (End)