A183098 a(1) = 0, a(n) = sum of divisors d of n such that if d = Product_{i} (p_i^e_i) then not all e_i are > 1.
0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 65, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1
Examples
For n = 12, the set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12 = 23.
Links
Programs
-
Mathematica
f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := f1[p, e] - p; a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
-
PARI
A183098(n) = sumdiv(n, d, d*(!ispowerful(d))); \\ Antti Karttunen, Oct 07 2017
Formula
Extensions
Name corrected by Jon E. Schoenfield, Aug 29 2023
Comments