cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183098 a(1) = 0, a(n) = sum of divisors d of n such that if d = Product_{i} (p_i^e_i) then not all e_i are > 1.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 65, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = sum of non-powerful divisors d of n where powerful numbers are numbers from A001694(m) for m >= 2.
Sequence is not the same as A183101(n): a(72) = 65, A183101(72) = 137.

Examples

			For n = 12, the set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12 = 23.
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := f1[p, e] - p; a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    A183098(n) = sumdiv(n, d, d*(!ispowerful(d))); \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A000203(n) - A183097(n) = A183100(n) - 1.
a(1) = 0, a(p) = p, a(p*q) = p+q+p*q, a(p*q*...*z) = (p+1)*(q+1)*...*(z+1) - 1, a(p^k) = p, for p, q = primes, k = natural numbers, p*q*...*z = product of k (k > 2) distinct primes p, q, ..., z.

Extensions

Name corrected by Jon E. Schoenfield, Aug 29 2023