A183105 a(n) = product of divisors of n that are not perfect powers.
1, 2, 3, 2, 5, 36, 7, 2, 3, 100, 11, 432, 13, 196, 225, 2, 17, 648, 19, 2000, 441, 484, 23, 10368, 5, 676, 3, 5488, 29, 810000, 31, 2, 1089, 1156, 1225, 7776, 37, 1444, 1521, 80000, 41, 3111696, 43, 21296, 10125, 2116, 47, 497664, 7, 5000, 2601, 35152, 53, 34992, 3025, 307328, 3249, 3364, 59, 11664000000, 61, 3844, 27783, 2, 4225, 18974736, 67, 78608, 4761, 24010000, 71, 13436928
Offset: 1
Examples
For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 1*2*3*6*12 = 432.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16385
Programs
-
Maple
isA001597 := proc(n) local e ; e := seq(op(2,p),p=ifactors(n)[2]) ; return ( igcd(e) >=2 ) ; end proc: A183105 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if not isA001597(d) then a := a*d; end if; end do; a ; end proc: seq(A183105(n),n=1..72) ; # R. J. Mathar, Jun 07 2011
-
Mathematica
perfectPowerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; a[n_] := Times @@ Select[Divisors[n], !perfectPowerQ[#]&]; Table[a[n], {n, 1, 72}] (* Jean-François Alcover, May 31 2024 *)
-
PARI
A183105(n) = { my(m=1); fordiv(n, d, if(!ispower(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017
Comments