cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183111 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE] pre-colored puzzle.

Original entry on oeis.org

0, 1, 3, 9, 25, 75, 223, 665, 1993, 5971, 17903, 53697, 161065, 483163, 1449439, 4348233, 13044585, 39133571, 117400431, 352200881, 1056601993, 3169805003, 9509413535, 28528238329, 85584711561, 256754129459, 770262380399, 2310787129121, 6932361368937
Offset: 0

Views

Author

Uri Levy, Dec 25 2010

Keywords

Comments

A. The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the sequence is optimal (the sequence presented gives the minimum number of moves to solve the puzzle for the given pre-coloring configurations). Optimal solutions are discussed and their optimality is proved in link 2 listed below.
B. Disk numbering is from largest disk (k = 1) to smallest disk (k = N)
C. The above-listed "original" sequence generates a "partial-sums" sequence - describing the total number of moves required to solve the puzzle.
D. The number of moves of disk k, for large k, is close to (10/11)*3^(k-1) ~ 0.909*3^(k-1). Series designation: P909(k).

Crossrefs

A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi.

Programs

  • Mathematica
    LinearRecurrence[{3,1,-1,-6},{0,1,3,9,25},30] (* Harvey P. Dale, Apr 30 2018 *)

Formula

G.f.: -x*(-1+4*x^3+x^2) / ( (3*x-1)*(2*x^3+x^2-1) ).
Recurrence Relations (a(n)=P909(n) as in referenced paper):
a(n) = a(n-2) + a(n-3) + 2*3^(n-2) + 2*3^(n-4) ; n >= 4
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For any n > 0:
a(n) = (10/11)*3^(n-1) + AP* λ1^(n-1) + BP* λ2^(n-1) + CP* λ3^(n-1)
33*a(n) = 10*3^n -3*( A052947(n-2) -A052947(n-1) -4*A052947(n) ). - R. J. Mathar, Feb 05 2020

Extensions

More terms from Harvey P. Dale, Apr 30 2018