A183111 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE] pre-colored puzzle.
0, 1, 3, 9, 25, 75, 223, 665, 1993, 5971, 17903, 53697, 161065, 483163, 1449439, 4348233, 13044585, 39133571, 117400431, 352200881, 1056601993, 3169805003, 9509413535, 28528238329, 85584711561, 256754129459, 770262380399, 2310787129121, 6932361368937
Offset: 0
Links
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173; arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet to play The Magnetic Tower of Hanoi
- Index entries for linear recurrences with constant coefficients, signature (3,1,-1,-6).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3,1,-1,-6},{0,1,3,9,25},30] (* Harvey P. Dale, Apr 30 2018 *)
Formula
G.f.: -x*(-1+4*x^3+x^2) / ( (3*x-1)*(2*x^3+x^2-1) ).
Recurrence Relations (a(n)=P909(n) as in referenced paper):
a(n) = a(n-2) + a(n-3) + 2*3^(n-2) + 2*3^(n-4) ; n >= 4
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For any n > 0:
a(n) = (10/11)*3^(n-1) + AP* λ1^(n-1) + BP* λ2^(n-1) + CP* λ3^(n-1)
Extensions
More terms from Harvey P. Dale, Apr 30 2018
Comments