A000244
Powers of 3: a(n) = 3^n.
Original entry on oeis.org
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Banchoff, Counting the Faces of Higher-Dimensional Cubes, Beyond the Third Dimension: Geometry, computer graphics and higher dimensions, Scientific American Library, 1996.
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 7
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 268
- Milan Janjic, Enumerative Formulae for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Ladder Rung Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Doron Zeilberger, The Amazing 3^n Theorem and its even more Amazing Proof [Discovered by Xavier G. Viennot and his École Bordelaise gang], arXiv:1208.2258, 2012.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to Benford's law
Cf.
A008776 (2*a(n), and first differences).
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
-
a000244 = (3 ^) -- Reinhard Zumkeller, Nov 14 2011
a000244_list = iterate (* 3) 1 -- Reinhard Zumkeller, Apr 04 2012
-
[ 3^n : n in [0..30] ]; // Wesley Ivan Hurt, Jul 04 2014
-
A000244 := n->3^n; [ seq(3^n, n=0..50) ];
A000244:=-1/(-1+3*z); # Simon Plouffe in his 1992 dissertation.
-
Table[3^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
3^Range[0, 30] (* Wesley Ivan Hurt, Jul 04 2014 *)
LinearRecurrence[{3}, {1}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
NestList[3#&,1,30] (* Harvey P. Dale, Feb 20 2020 *)
-
makelist(3^n, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
-
A000244(n) = 3^n \\ Michael B. Porter, Nov 03 2009
-
def A000244(n): return 3**n # Chai Wah Wu, Nov 10 2022
-
val powersOf3: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 3)
(0 to 26).map(powersOf3()) // _Alonso del Arte, May 03 2020
A003462
a(n) = (3^n - 1)/2.
Original entry on oeis.org
0, 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 1743392200, 5230176601, 15690529804, 47071589413, 141214768240, 423644304721, 1270932914164
Offset: 0
There are 4 3-block bicoverings of a 3-set: {{1, 2, 3}, {1, 2}, {3}}, {{1, 2, 3}, {1, 3}, {2}}, {{1, 2, 3}, {1}, {2, 3}} and {{1, 2}, {1, 3}, {2, 3}}.
Ternary........Decimal
0.................0
1.................1
11................4
111..............13
1111.............40 etc. - _Zerinvary Lajos_, Jan 14 2007
There are altogether a(3) = 13 three letter words over {A,B,C} with say, A, appearing an odd number of times: AAA; ABC, ACB, ABB, ACC; BAC, CAB, BAB, CAC; BCA, CBA, BBA, CCA. - _Wolfdieter Lang_, Jul 16 2017
- J. G. Mauldon, Strong solutions for the counterfeit coin problem, IBM Research Report RC 7476 (#31437) 9/15/78, IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598.
- Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag, NY, 2nd ed., 1989, p. 60.
- Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
- Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence a(n).
- Robert Sedgewick, Algorithms, 1992, pp. 109.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paolo Xausa, Table of n, a(n) for n = 0..2000 (terms 0..200 from T. D. Noe)
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Max A. Alekseyev and Toby Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
- Arcytech, The Sierpinski Triangle Fractal.
- Andrei Asinowski and Michaela A. Polley, Patterns in rectangulations. Part I: T-like patterns, inversion sequence classes I(010, 101, 120, 201) and I(011, 201), and rushed Dyck paths, arXiv:2501.11781 [math.CO], 2025. See p. 26.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Beáta Bényi and Toshiki Matsusaka, Extensions of the combinatorics of poly-Bernoulli numbers, arXiv:2106.05585 [math.CO], 2021.
- Göksal Bilgici and Tuncay Deniz Şentürk, Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers, Annales Mathematicae Silesianae (2019) Vol. 33, 55-65.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From _N. J. A. Sloane_, Dec 24 2012
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 17, 26.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
- John Elias, Sierpinski Nesting Stars, Stars of 3*9^n-1/2, Stars of 9^n-1/2, Sierpinski Anti-Triangles.
- Graham Everest, Shaun Stevens, Duncan Tamsett and Tom Ward, Primes generated by recurrence sequences, Amer. Math. Monthly, Vol. 114, No. 5 (2007), pp. 417-431.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 372.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
- H. V. Krishna and N. J. A. Sloane, Correspondence, 1975.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- A. G. Shannon, Letter to N. J. A. Sloane, Dec 06 1974.
- Morgan Ward, Note on divisibility sequences, Bull. Amer. Math. Soc., 42 (1936), 843-845.
- Eric Weisstein's World of Mathematics, Apollonian Network.
- Eric Weisstein's World of Mathematics, Dorogovtsev-Goltsev-Mendes Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Eric Weisstein's World of Mathematics, Mephisto Waltz Sequence.
- Eric Weisstein's World of Mathematics, Repunit.
- Eric Weisstein's World of Mathematics, Weighing.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008).
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., Vol. 3 (1892), 265-284.
- Index entries for sequences related to sorting
- Index entries for linear recurrences with constant coefficients, signature (4,-3)
Cf.
A064099 (minimal number of weightings to detect lighter or heavier coin among n coins).
Cf.
A006516 (binomial transform, and special 4 letter words).
-
A003462:=List([0..30],n->(3^n-1)/2); # Muniru A Asiru, Sep 27 2017
-
a003462 = (`div` 2) . (subtract 1) . (3 ^)
a003462_list = iterate ((+ 1) . (* 3)) 0 -- Reinhard Zumkeller, May 09 2012
-
[(3^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Feb 21 2015
-
A003462 := n-> (3^n - 1)/2: seq(A003462(n), n=0..30);
A003462:=1/(3*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
-
(3^Range[0, 30] - 1)/2 (* Harvey P. Dale, Jul 13 2011 *)
LinearRecurrence[{4, -3}, {0, 1}, 30] (* Harvey P. Dale, Jul 13 2011 *)
Accumulate[3^Range[0, 30]] (* Alonso del Arte, Sep 10 2017 *)
CoefficientList[Series[x/(1 - 4x + 3x^2), {x, 0, 30}], x] (* Eric W. Weisstein, Sep 28 2017 *)
Table[FromDigits[PadRight[{},n,1],3],{n,0,30}] (* Harvey P. Dale, Jun 01 2022 *)
-
A003462(n):=(3^n - 1)/2$
makelist(A003462(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=(3^n-1)/2
-
concat(0, Vec(x/((1-x)*(1-3*x)) + O(x^30))) \\ Altug Alkan, Nov 01 2015
-
[(3^n - 1)/2 for n in range(0,30)] # Zerinvary Lajos, Jun 05 2009
Corrected my comment of Jan 10 2008. -
Ross La Haye, Oct 29 2008
Removed comment that duplicated a formula. -
Joerg Arndt, Mar 11 2010
A183125
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 83, 236, 687, 2026, 6027, 18008, 53927, 161654, 484803, 1454212, 4362399, 13086914, 39260411, 117780848, 353342103, 1060025806, 3180076851, 9540229916, 28620689039, 85862066330, 257586198123, 772758593416, 2318275779207, 6954827336486, 20864482008227, 62593446023348, 187780338068607, 563341014204274, 1690023042611163
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Muniru A Asiru, Table of n, a(n) for n = 0..2020
- Uri Levy, The Magnetic Tower of Hanoi, arxiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3).
A183123 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
a:=[30, 83, 236, 687, 2026];; for n in [6..30] do a[n]:=5*a[n-1]-6*a[n-2] -2*a[n-3]+7*a[n-4]-3*a[n-5]; od; Concatenation([0, 1, 4, 11], a); # G. C. Greubel, Dec 04 2018
-
I:=[0,1,4,11,30,83,236,687,2026]; [n le 9 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))); // G. C. Greubel, Dec 04 2018
-
seq(coeff(series((-4*x^8-2*x^6+x^4-3*x^3-x^2+x)/(3*x^5-7*x^4+2*x^3+6*x^2-5*x+1),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Join[{0, 1, 4, 11}, LinearRecurrence[{5, -6, -2, 7, -3}, {30, 83, 236, 687, 2026}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
CoefficientList[Series[(- 4 x^8 - 2 x^6 + x^4 - 3 x^3 - x^2 + x) / (3 x^5 - 7 x^4 + 2 x^3 + 6 x^2 - 5 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
-
my(x='x+O('x^30)); concat([0], Vec((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))) \\ G. C. Greubel, Dec 04 2018
-
s=((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
A122983
a(n) = (2 + (-1)^n + 3^n)/4.
Original entry on oeis.org
1, 1, 3, 7, 21, 61, 183, 547, 1641, 4921, 14763, 44287, 132861, 398581, 1195743, 3587227, 10761681, 32285041, 96855123, 290565367, 871696101, 2615088301, 7845264903, 23535794707, 70607384121, 211822152361, 635466457083
Offset: 0
- M. F. Hasler, Table of n, a(n) for n = 0..199.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint, arXiv:1505.04479 [math.GR], 2015.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 99. Book's website
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Eric Weisstein's World of Mathematics, Domination Number.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Lower Independence Number.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
-
A122983 := n -> ceil(3^n/4); 'A122983(n)' $ n=0..22; # M. F. Hasler, Feb 25 2008
a[ -1]:=1:a[0]:=1:a[1]:=3:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-2 od: seq(a[n], n=-1..25); # Zerinvary Lajos, Apr 28 2008
-
CoefficientList[Series[(1 - 2 x - x^2)/((1 - x) (1 + x) (1 - 3 x)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 03 2013 *)
LinearRecurrence[{3, 1, -3}, {1, 1, 3}, 40] (* Harvey P. Dale, Sep 03 2013 *)
Table[(2 + (-1)^n + 3^n)/4, {n, 0, 20}] (* Eric W. Weisstein, Jun 16 2017 *)
Table[Floor[3^n/4] + 1, {n, 0, 20}] (* Eric W. Weisstein, Jan 17 2018 *)
Floor[3^Range[0, 20]/4] + 1 (* Eric W. Weisstein, Jan 17 2018 *)
-
A122983(n)=3^n\4+1 \\ M. F. Hasler, Feb 25 2008
-
def A122983(n): return (1 if n&1 else 3)+3**n>>2 # Chai Wah Wu, Apr 12 2023
Extended and corrected (existing Maple code) by
M. F. Hasler, Feb 25 2008
A104743
a(n) = 3^n + n.
Original entry on oeis.org
1, 4, 11, 30, 85, 248, 735, 2194, 6569, 19692, 59059, 177158, 531453, 1594336, 4782983, 14348922, 43046737, 129140180, 387420507, 1162261486, 3486784421, 10460353224, 31381059631, 94143178850, 282429536505, 847288609468
Offset: 0
-
List([0..40], n-> 3^n +n ); # G. C. Greubel, May 21 2019
-
[3^n +n: n in [0..40]]; // G. C. Greubel, May 21 2019
-
Table[3^n +n, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2009, modified by G. C. Greubel, May 21 2019 *)
LinearRecurrence[{5,-7,3},{1,4,11},30] (* Harvey P. Dale, Aug 01 2020 *)
-
{a(n) = 3^n + n}; \\ G. C. Greubel, May 21 2019
-
[3^n +n for n in (0..40)] # G. C. Greubel, May 21 2019
A100702
Number of layers of dough separated by butter in successive foldings of croissant dough.
Original entry on oeis.org
1, 3, 7, 19, 55, 163, 487, 1459, 4375, 13123, 39367, 118099, 354295, 1062883, 3188647, 9565939, 28697815, 86093443, 258280327, 774840979, 2324522935, 6973568803, 20920706407, 62762119219, 188286357655, 564859072963
Offset: 0
Daniel Wolf (djwolf1(AT)axelero.hu), Dec 09 2004
- J. Child and M. Beck, Mastering the Art of French Cooking, Vol. 2
-
Join[{1}, LinearRecurrence[{4, -3}, {3, 7}, 25]] (* Jean-François Alcover, Jul 28 2018 *)
-
a(n)=([0,1; -3,4]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jan 28 2018
A183119
Magnetic Tower of Hanoi, total number of moves generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; BLUE] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 32, 93, 276, 823, 2464, 7385, 22148, 66435, 199296, 597877, 1793620, 5380847, 16142528, 48427569, 145282692, 435848059, 1307544160, 3922632461, 11767897364, 35303692071, 105911076192, 317733228553, 953199685636, 2859599056883, 8578797170624, 25736391511845
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Muniru A Asiru, Table of n, a(n) for n = 0..2070
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
A122983 - "Binomial transform of aeration of
A081294" is an "original" sequence (also) describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "75" algorithm mentioned above and presented in the paper referenced by link 1 above. The integer sequence listed above is the partial sums of the
A122983 original sequence.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
[3^(n+1)/8+(n-1)/2+(-1)^n/8: n in [0..30]]; // Vincenzo Librandi, Dec 04 2018
-
seq(coeff(series(x*(3*x^2-1)/((1+x)*(3*x-1)*(x-1)^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 04 2018
-
LinearRecurrence[{4, -2, -4, 3}, {0, 1, 4, 11}, 30] (* Jean-François Alcover, Dec 04 2018 *)
Table[3^(n + 1) / 8 + (n - 1) / 2 + (-1)^n / 8, {n, 0, 30}] (* Vincenzo Librandi, Dec 04 2018 *)
-
a(n) = 3^(n+1)/8 + (n-1)/2 + (-1)^n/8 \\ Charles R Greathouse IV, Jun 11 2015
A183117
Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 53, 153, 451, 1339, 3997, 11961, 35835, 107435, 322197, 966425, 2899027, 8696699, 26089517, 78267673, 234801675, 704402987, 2113205861, 6339612857, 19018831395, 57056483259, 171169433149, 513508274169, 1540524784027, 4621574293547, 13864722791605, 41594168239321
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp. 173.
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
L1 = Root[-2 - # + #^3&, 1];
L2 = Root[-2 - # + #^3&, 3];
L3 = Root[-2 - # + #^3&, 2];
AP = Root[-2 - 9# - 52 #^2 + 572 #^3&, 1];
BP = Root[-2 - 9# - 52 #^2 + 572 #^3&, 3];
CP = Root[-2 - 9# - 52 #^2 + 572 #^3&, 2];
a[0] = 0;
a[n_] := (1/2) AP (L1+1)^2 L1^(n-1) + (1/2) BP (L2+1)^2 L2^(n-1) + (1/2) CP (L3+1)^2 L3^(n-1) + (20 3^(n-1))/33;
Table[a[n] // Round, {n, 0, 30}] (* Jean-François Alcover, Dec 03 2018 *)
A183115
Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 55, 159, 471, 1403, 4191, 12551, 37615, 112787, 338279, 1014703, 3043911, 9131435, 27393839, 82180823, 246541407, 739622595, 2218865335, 6656592255, 19969771063, 59909304539, 179727900415, 539183681191, 1617551013071, 4852652992755, 14557958907655, 43673876615503
Offset: 0
- Uri Levy, "The Magnetic Tower of Hanoi", Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp. 173.
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
L1 = Root[-2 - # + #^3&, 1];
L2 = Root[-2 - # + #^3&, 3];
L3 = Root[-2 - # + #^3&, 2];
AP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 1];
BP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 3];
CP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 2];
a[0] = 0;
a[n_] := (7/11) 3^(n-1) + AP (L1+1) L1^(n-1) + BP (L2+1) L2^(n-1) + CP (L3+1) L3^(n-1);
Table[a[n] // Round, {n, 0, 30}] (* Jean-François Alcover, Dec 03 2018 *)
A183118
Magnetic Tower of Hanoi, total number of moves, optimally solving the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 83, 236, 687, 2026, 6023, 17984, 53819, 161254, 483451, 1449876, 4348903, 13045602, 39135119, 117402792, 352204467, 1056607454
Offset: 0
- "The Magnetic Tower of Hanoi", Uri Levy, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet, to play The Magnetic Tower of Hanoi
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-2,-5,6).
A183117 is an "original" sequence describing the number of moves of disk number k, optimally solving the pre-colored puzzle at hand. The integer sequence listed above is the partial sums of the
A183117 original sequence.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
Join[{0}, LinearRecurrence[{4, -2, -2, -5, 6}, {1, 4, 11, 30, 83}, 20]] (* Jean-François Alcover, Jan 28 2019 *)
Showing 1-10 of 19 results.
Comments