A183125
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 83, 236, 687, 2026, 6027, 18008, 53927, 161654, 484803, 1454212, 4362399, 13086914, 39260411, 117780848, 353342103, 1060025806, 3180076851, 9540229916, 28620689039, 85862066330, 257586198123, 772758593416, 2318275779207, 6954827336486, 20864482008227, 62593446023348, 187780338068607, 563341014204274, 1690023042611163
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Muniru A Asiru, Table of n, a(n) for n = 0..2020
- Uri Levy, The Magnetic Tower of Hanoi, arxiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3).
A183123 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
a:=[30, 83, 236, 687, 2026];; for n in [6..30] do a[n]:=5*a[n-1]-6*a[n-2] -2*a[n-3]+7*a[n-4]-3*a[n-5]; od; Concatenation([0, 1, 4, 11], a); # G. C. Greubel, Dec 04 2018
-
I:=[0,1,4,11,30,83,236,687,2026]; [n le 9 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))); // G. C. Greubel, Dec 04 2018
-
seq(coeff(series((-4*x^8-2*x^6+x^4-3*x^3-x^2+x)/(3*x^5-7*x^4+2*x^3+6*x^2-5*x+1),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Join[{0, 1, 4, 11}, LinearRecurrence[{5, -6, -2, 7, -3}, {30, 83, 236, 687, 2026}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
CoefficientList[Series[(- 4 x^8 - 2 x^6 + x^4 - 3 x^3 - x^2 + x) / (3 x^5 - 7 x^4 + 2 x^3 + 6 x^2 - 5 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
-
my(x='x+O('x^30)); concat([0], Vec((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))) \\ G. C. Greubel, Dec 04 2018
-
s=((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
A122983
a(n) = (2 + (-1)^n + 3^n)/4.
Original entry on oeis.org
1, 1, 3, 7, 21, 61, 183, 547, 1641, 4921, 14763, 44287, 132861, 398581, 1195743, 3587227, 10761681, 32285041, 96855123, 290565367, 871696101, 2615088301, 7845264903, 23535794707, 70607384121, 211822152361, 635466457083
Offset: 0
- M. F. Hasler, Table of n, a(n) for n = 0..199.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint, arXiv:1505.04479 [math.GR], 2015.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 99. Book's website
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Eric Weisstein's World of Mathematics, Domination Number.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Lower Independence Number.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
-
A122983 := n -> ceil(3^n/4); 'A122983(n)' $ n=0..22; # M. F. Hasler, Feb 25 2008
a[ -1]:=1:a[0]:=1:a[1]:=3:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-2 od: seq(a[n], n=-1..25); # Zerinvary Lajos, Apr 28 2008
-
CoefficientList[Series[(1 - 2 x - x^2)/((1 - x) (1 + x) (1 - 3 x)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 03 2013 *)
LinearRecurrence[{3, 1, -3}, {1, 1, 3}, 40] (* Harvey P. Dale, Sep 03 2013 *)
Table[(2 + (-1)^n + 3^n)/4, {n, 0, 20}] (* Eric W. Weisstein, Jun 16 2017 *)
Table[Floor[3^n/4] + 1, {n, 0, 20}] (* Eric W. Weisstein, Jan 17 2018 *)
Floor[3^Range[0, 20]/4] + 1 (* Eric W. Weisstein, Jan 17 2018 *)
-
A122983(n)=3^n\4+1 \\ M. F. Hasler, Feb 25 2008
-
def A122983(n): return (1 if n&1 else 3)+3**n>>2 # Chai Wah Wu, Apr 12 2023
Extended and corrected (existing Maple code) by
M. F. Hasler, Feb 25 2008
A183120
Magnetic Tower of Hanoi, number of moves of disk number k, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 55, 159, 471, 1403, 4199, 12583, 37735, 113187, 339543, 1018607, 3055799, 9167371, 27502087, 82506231, 247518663, 742555955, 2227667831, 6683003455, 20049010327, 60147030939, 180441092775, 541323278279, 1623969834791, 4871909504323
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
Cf.
A100702 - is a sequence also describing the number of moves of disk number k, generated by another algorithm, designated "67", yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle at hand. Recurrence relations for this sequence is a(k) = 3*a(k-1) - 2 and the closed-form expression is (2/3)*3^(k-1)+1. Large k limit is clearly (2/3)*3^(k-1) =~ 0.67*3^(k-1), and sequence designation is thus P67(k). The (non-optimal) "67" algorithm solving the Magnetic Tower of Hanoi with the given pre-coloring configuration yielding the P67(k) sequence (given by
A100702) is explicitly described and discussed in the paper referenced in link 1 above.
Cf.
A000244 - "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
nxt[{a_,b_}]:=Module[{c=3b-2(a+1)},{a+1,If[EvenQ[a+1],c+6,c+8]}]; Join[ {0,1,3,7},Transpose[NestList[nxt,{4,19},25]][[2]]] (* or *) Join[ {0,1,3},LinearRecurrence[{4,-2,-4,3},{7,19,55,159},40]] (* Harvey P. Dale, May 04 2012 *)
A183121
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 85, 244, 715, 2118, 6317, 18900, 56635, 169822, 509365, 1527972, 4583771, 13751142, 41253229, 123759460, 371278123, 1113834078, 3341501909, 10024505364, 30073515691, 90220546630, 270661639405, 811984917684, 2435954752475, 7307864256798, 21923592769717, 65770778308420, 197312334924475
Offset: 0
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843, 2010.
- U. Levy, to play The Magnetic Tower of Hanoi, web applet. [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3).
A183120 - is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "64" algorithm mentioned above.
A104743 - is a sequence also describing the total number of moves, generated by another algorithm, designated "67", yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle at hand. Recurrence relations for this sequence is a(n) = a(n-1) + 2*3^(n-2) + 1 and the closed-form expression is 3^(n-1) + n - 1. Large N limit is 0.5*(2/3)*3^N =~ 0.5*0.67*3^N, and sequence designation is thus S67(n). The (non-optimal) "67" algorithm solving the Magnetic Tower of Hanoi with the given pre-coloring configuration yielding the S67(n) sequence (given by
A104743) is explicitly described and discussed in the paper referenced in link 1 above.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
I:=[0,1,4,11,30,85,244]; [n le 7 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
-
seq(coeff(series(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3)), x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Join[{0, 1}, LinearRecurrence[{5, -6, -2, 7, -3}, {4, 11, 30, 85, 244}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
CoefficientList[Series[x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/ ((1+x)*(1-3*x)*(1-x)^3))) \\ G. C. Greubel, Dec 04 2018
-
s=(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3) ).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
A183122
Magnetic Tower of Hanoi, number of moves of disk number k, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 53, 153, 455, 1359, 4073, 12213, 36635, 109899, 329693, 989073, 2967215, 8901639, 26704913, 80114733, 240344195, 721032579, 2163097733, 6489293193, 19467879575, 58403638719, 175210916153, 525632748453, 1576898245355, 4730694736059
Offset: 0
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arxiv:1011.3843
- U. Levy, to play The Magnetic Tower of Hanoi, web applet
- Index entries for linear recurrences with constant coefficients, signature (3, 1, -3).
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
Join[{0,1,3,7},LinearRecurrence[{3,1,-3},{19,53,153},30]] (* Harvey P. Dale, Dec 08 2014 *)
A183123
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 83, 236, 691, 2050, 6123, 18336, 54971, 164870, 494563, 1483636, 4450851, 13352490, 40057403, 120172136, 360516331, 1081548910, 3244646643, 9733939836, 29201819411, 87605458130, 262816374283, 788449122736, 2365347368091, 7096042104150
Offset: 0
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arxiv:1011.3843 [math.CO], 2010.
- U. Levy, to play The Magnetic Tower of Hanoi, web applet.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
Cf.
A183122 - "Magnetic Tower of Hanoi, number of moves of disk number k, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle" is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "62" algorithm mentioned above.
Cf.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
LinearRecurrence[{4,-2,-4,3},{0,1,4,11,30,83,236},40] (* Harvey P. Dale, Jun 07 2015 *)
-
concat(0, Vec(x*(4*x^5+2*x^4+2*x^3+3*x^2-1)/((x-1)^2*(x+1)*(3*x-1)) + O(x^100))) \\ Colin Barker, Sep 18 2014
More terms and correction to recurrence by
Colin Barker, Sep 18 2014
A183124
Magnetic Tower of Hanoi, number of moves of disk number n, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 53, 153, 451, 1339, 4001, 11981, 35919, 107727, 323149, 969409, 2908187, 8724515, 26173497, 78520437, 235561255, 706683703
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
A183122 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
Showing 1-7 of 7 results.
Comments