cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100702 Number of layers of dough separated by butter in successive foldings of croissant dough.

Original entry on oeis.org

1, 3, 7, 19, 55, 163, 487, 1459, 4375, 13123, 39367, 118099, 354295, 1062883, 3188647, 9565939, 28697815, 86093443, 258280327, 774840979, 2324522935, 6973568803, 20920706407, 62762119219, 188286357655, 564859072963
Offset: 0

Views

Author

Daniel Wolf (djwolf1(AT)axelero.hu), Dec 09 2004

Keywords

Comments

At each trebling of layers following the first, two sets of layers, not separated from their neighbors by butter, are combined. Traditional patisserie stops at 55 layers, but forgetful chefs have been known to make additional folds to 163 layers.
This sequence also describes the number of moves of the k-th disk solving (non-optimally) the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle (see the "CROSSREFS" in A183120). For other Magnetic Tower of Hanoi related sequences cf. A183111-A183125.
Same as A052919 except first term is 1, not 2. - Omar E. Pol, Feb 20 2011

References

  • J. Child and M. Beck, Mastering the Art of French Cooking, Vol. 2

Crossrefs

Cf. A052919.

Programs

Formula

For n > 1, a(n) = 3*a(n-1) - 2.
From R. J. Mathar, Jun 30 2009: (Start)
a(n) = 1 + 2*3^(n-1), n > 0.
a(n) = 4*a(n-1) - 3*a(n-2), n > 2.
G.f.: -(1+x)*(2*x-1)/((3*x-1)*(x-1)). (End)

A183121 Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.

Original entry on oeis.org

0, 1, 4, 11, 30, 85, 244, 715, 2118, 6317, 18900, 56635, 169822, 509365, 1527972, 4583771, 13751142, 41253229, 123759460, 371278123, 1113834078, 3341501909, 10024505364, 30073515691, 90220546630, 270661639405, 811984917684, 2435954752475, 7307864256798, 21923592769717, 65770778308420, 197312334924475
Offset: 0

Views

Author

Uri Levy, Jan 05 2011

Keywords

Comments

The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the presented sequence is NOT optimal. The particular "64" algorithm solving the puzzle at hand is not explicitly presented in any of the referenced papers. The series and its properties are listed in the paper referenced by link 2 listed below. For the optimal solution of the Magnetic Tower of Hanoi puzzle with the given pre-coloring configuration see A183115 and A183116. Optimal solutions are discussed and their optimality is proved in link 2 listed below.
Large N limit of the sequence is 0.5*(23/36)*3^N =~ 0.5*0.64*3^N. Series designation: S64(n).

References

  • U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.

Crossrefs

A183120 - is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "64" algorithm mentioned above.
A104743 - is a sequence also describing the total number of moves, generated by another algorithm, designated "67", yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle at hand. Recurrence relations for this sequence is a(n) = a(n-1) + 2*3^(n-2) + 1 and the closed-form expression is 3^(n-1) + n - 1. Large N limit is 0.5*(2/3)*3^N =~ 0.5*0.67*3^N, and sequence designation is thus S67(n). The (non-optimal) "67" algorithm solving the Magnetic Tower of Hanoi with the given pre-coloring configuration yielding the S67(n) sequence (given by A104743) is explicitly described and discussed in the paper referenced in link 1 above.
A003462 "Partial sums of A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.

Programs

  • Magma
    I:=[0,1,4,11,30,85,244]; [n le 7 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
    
  • Maple
    seq(coeff(series(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3)), x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
  • Mathematica
    Join[{0, 1}, LinearRecurrence[{5, -6, -2, 7, -3}, {4, 11, 30, 85, 244}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
    CoefficientList[Series[x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/ ((1+x)*(1-3*x)*(1-x)^3))) \\ G. C. Greubel, Dec 04 2018
    
  • Sage
    s=(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3) ).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018

Formula

G.f.: x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3).
(a(n) = S64(n) as in referenced paper):
a(n) = 3*a(n-1) - n^2 + 6*n - 11; n even; n >= 4.
a(n) = 3*a(n-1) - n^2 + 6*n - 10; n odd; n >= 3.
a(n) = a(n-1) + 2* S75(n-3) + 5*3^(n-3) + 2; n >= 3
S75(n) refers to the integer sequence described by A183119.
a(n) = 0.5*(23/36)*3^n + 0.5*n^2 - 1.5*n + 17/8; n even; n >= 2.
a(n) = 0.5*(23/36)*3^n + 0.5*n^2 - 1.5*n + 19/8; n odd; n >= 3.
a(n) = 5*a(n-1)-6*a(n-2)-2*a(n-3)+7*a(n-4)-3*a(n-5), for n>5. - Vincenzo Librandi, Dec 04 2018

Extensions

More terms from Jean-François Alcover, Dec 04 2018

A183124 Magnetic Tower of Hanoi, number of moves of disk number n, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.

Original entry on oeis.org

0, 1, 3, 7, 19, 53, 153, 451, 1339, 4001, 11981, 35919, 107727, 323149, 969409, 2908187, 8724515, 26173497, 78520437, 235561255, 706683703
Offset: 0

Views

Author

Uri Levy, Jan 08 2011

Keywords

Comments

The Magnetic Tower of Hanoi puzzle is described in the preprint of March 2010. The Magnetic Tower is pre-colored. Pre-coloring is [NEUTRAL ; NEUTRAL ; NEUTRAL], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the presented sequence is NOT optimal. The particular "61" algorithm solving the puzzle at hand is not explicitly presented in any of the referenced papers. For the optimal solution of the Magnetic Tower of Hanoi puzzle with the given pre-coloring configuration (the "natural" or "free" Magnetic Tower) see A183117 and A183118. Optimal solutions are discussed and their optimality is proved in the preprint of Nov 2010.
Disk numbering is from largest disk (k = 1) to smallest disk (k = N).
The above-listed "original" sequence generates a "partial-sums" sequence - describing the total number of moves required to solve the puzzle.
Number of moves of disk k, for large k, is close to (197/324)*3^(k-1) ~ 0.61*3^(k-1). Series designation: P61(k).

References

  • Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.

Crossrefs

A183122 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.

Formula

G.f.: (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(-3*x^4 +4*x^3 +2*x^2 -4*x +1)
a(n)=+4*a(n-1)-2*a(n-2)-4*a(n-3)+3*a(n-4), n>=9.
(a(n) = P61(n) as in referenced paper):
a(n) = 3*a(n-1) - 4*n + 18 ; n even ; n >= 5
a(n) = 3*a(n-1) - 4*n + 20 ; n odd ; n >= 6
a(n) = P64(n-1) + P64(n-2) + P75(n-3) + 8*3^(n-4) ; n >= 4
P75(n) and P64(n) refer to the integer sequences described by A122983 and A183120 respectively. See also A183119.
a(n) = (197/324)*3^(n-1) + 2*n - 27/4; n even; n >= 6
a(n) = (197/324)*3^(n-1) + 2*n - 25/4; n odd; n >= 5
Showing 1-3 of 3 results.