A100702
Number of layers of dough separated by butter in successive foldings of croissant dough.
Original entry on oeis.org
1, 3, 7, 19, 55, 163, 487, 1459, 4375, 13123, 39367, 118099, 354295, 1062883, 3188647, 9565939, 28697815, 86093443, 258280327, 774840979, 2324522935, 6973568803, 20920706407, 62762119219, 188286357655, 564859072963
Offset: 0
Daniel Wolf (djwolf1(AT)axelero.hu), Dec 09 2004
- J. Child and M. Beck, Mastering the Art of French Cooking, Vol. 2
-
Join[{1}, LinearRecurrence[{4, -3}, {3, 7}, 25]] (* Jean-François Alcover, Jul 28 2018 *)
-
a(n)=([0,1; -3,4]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jan 28 2018
A183121
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 85, 244, 715, 2118, 6317, 18900, 56635, 169822, 509365, 1527972, 4583771, 13751142, 41253229, 123759460, 371278123, 1113834078, 3341501909, 10024505364, 30073515691, 90220546630, 270661639405, 811984917684, 2435954752475, 7307864256798, 21923592769717, 65770778308420, 197312334924475
Offset: 0
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843, 2010.
- U. Levy, to play The Magnetic Tower of Hanoi, web applet. [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3).
A183120 - is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "64" algorithm mentioned above.
A104743 - is a sequence also describing the total number of moves, generated by another algorithm, designated "67", yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle at hand. Recurrence relations for this sequence is a(n) = a(n-1) + 2*3^(n-2) + 1 and the closed-form expression is 3^(n-1) + n - 1. Large N limit is 0.5*(2/3)*3^N =~ 0.5*0.67*3^N, and sequence designation is thus S67(n). The (non-optimal) "67" algorithm solving the Magnetic Tower of Hanoi with the given pre-coloring configuration yielding the S67(n) sequence (given by
A104743) is explicitly described and discussed in the paper referenced in link 1 above.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
I:=[0,1,4,11,30,85,244]; [n le 7 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
-
seq(coeff(series(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3)), x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Join[{0, 1}, LinearRecurrence[{5, -6, -2, 7, -3}, {4, 11, 30, 85, 244}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
CoefficientList[Series[x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/ ((1+x)*(1-3*x)*(1-x)^3))) \\ G. C. Greubel, Dec 04 2018
-
s=(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3) ).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
A183124
Magnetic Tower of Hanoi, number of moves of disk number n, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 53, 153, 451, 1339, 4001, 11981, 35919, 107727, 323149, 969409, 2908187, 8724515, 26173497, 78520437, 235561255, 706683703
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
A183122 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
Showing 1-3 of 3 results.
Comments