A104745
a(n) = 5^n + n.
Original entry on oeis.org
1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0
-
I:=[1, 6, 27]; [n le 3 select I[n] else 7*Self(n-1)-11*Self(n-2) +5*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
-
g:=1/(1-5*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)+n, n=0..31); # Zerinvary Lajos, Jan 09 2009
-
Table[5^n+n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
CoefficientList[Series[(1 - x - 4 x^2) / ((1 - 5 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
LinearRecurrence[{7,-11,5},{1,6,27},30] (* Harvey P. Dale, Dec 03 2017 *)
-
a(n)=5^n+n \\ Charles R Greathouse IV, Oct 07 2015
More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007
A052919
a(n) = 1 + 2*3^(n-1) with a(0)=2.
Original entry on oeis.org
2, 3, 7, 19, 55, 163, 487, 1459, 4375, 13123, 39367, 118099, 354295, 1062883, 3188647, 9565939, 28697815, 86093443, 258280327, 774840979, 2324522935, 6973568803, 20920706407, 62762119219, 188286357655, 564859072963
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
Concatenation([2], List([1..30], n-> 1 + 2*3^(n-1) )); # G. C. Greubel, Oct 16 2019
-
I:=[2, 3, 7]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
-
spec := [S,{S=Union(Sequence(Prod(Sequence(Z),Union(Z,Z))),Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(`if`(n=0, 2, 1 + 2*3^(n-1)), n=0..30); # G. C. Greubel, Oct 16 2019
-
Join[{2},Table[2*(3^n+1)-1,{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
CoefficientList[Series[(2-5*x+x^2)/((1-x)*(1-3*x)),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
LinearRecurrence[{4,-3},{2,3,7},30] (* Harvey P. Dale, Dec 12 2017 *)
-
vector(31, n, if(n==1, 2, 1+ 2*3^(n-2))) \\ G. C. Greubel, Oct 16 2019
-
[2]+[1+2*3^(n-1) for n in (1..30)] # G. C. Greubel, Oct 16 2019
Original entry on oeis.org
1, 11, 102, 1003, 10004, 100005, 1000006, 10000007, 100000008, 1000000009, 10000000010, 100000000011, 1000000000012, 10000000000013, 100000000000014, 1000000000000015, 10000000000000016, 100000000000000017, 1000000000000000018
Offset: 1
-
[10^(n-1)+n-1: n in [1..20]]; // Vincenzo Librandi, Jun 16 2013
-
I:=[1, 11, 102]; [n le 3 select I[n] else 12*Self(n-1)-21*Self(n-2)+10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
-
seq(10^(n-1) +n-1, n=1..40); # G. C. Greubel, May 27 2021
-
Table[10^(n-1) +n-1, {n,30}] (* or *) CoefficientList[Series[(1-x-9x^2)/((1-10x)(1-x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
-
[10^(n-1) +n-1 for n in (1..40)] # G. C. Greubel, May 27 2021
A158879
a(n) = 4^n + n.
Original entry on oeis.org
1, 5, 18, 67, 260, 1029, 4102, 16391, 65544, 262153, 1048586, 4194315, 16777228, 67108877, 268435470, 1073741839, 4294967312, 17179869201, 68719476754, 274877906963, 1099511627796, 4398046511125, 17592186044438, 70368744177687
Offset: 0
a(0)=4^0+0 = 1, a(1)=4^1+1 = 5, a(2)=4^2+2 = 18, a(3)=4^3+3 = 67, ...
-
List([0..30], n-> n+4^n); # G. C. Greubel, Mar 04 2020
-
[4^n+n: n in [0..30]]; // Vincenzo Librandi, Jun 16 2013
-
seq( 4^n+n, n=0..30); # G. C. Greubel, Mar 04 2020
-
Table[4^n+n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
CoefficientList[Series[(1-x-3x^2)/((1-4x)(1-x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
LinearRecurrence[{6,-9,4},{1,5,18},30] (* Harvey P. Dale, Jun 02 2016 *)
-
a(n)=4^n+n \\ Charles R Greathouse IV, Oct 07 2015
-
[n+4^n for n in (0..30)] # G. C. Greubel, Mar 04 2020
A226199
a(n) = 7^n + n.
Original entry on oeis.org
1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0
-
[7^n+n: n in [0..20]];
-
I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
-
Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
-
a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226201
a(n) = 8^n + n.
Original entry on oeis.org
1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0
-
[8^n+n: n in [0..30]];
-
I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
-
Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
-
a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226202
a(n) = 9^n + n.
Original entry on oeis.org
1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0
-
[9^n+n: n in [0..30]];
-
I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
-
Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
-
a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226200
a(n) = 6^n + n.
Original entry on oeis.org
1, 7, 38, 219, 1300, 7781, 46662, 279943, 1679624, 10077705, 60466186, 362797067, 2176782348, 13060694029, 78364164110, 470184984591, 2821109907472, 16926659444753, 101559956668434, 609359740010515, 3656158440062996, 21936950640377877, 131621703842267158, 789730223053602839
Offset: 0
-
[6^n+n: n in [0..30]];
-
I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
-
Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
-
a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226737
a(n) = 11^n + n.
Original entry on oeis.org
1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0
-
[11^n+n: n in [0..30]];
-
I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
-
Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
-
a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015
A057900
Numbers k such that 3^k + k is prime.
Original entry on oeis.org
2, 8, 34, 1532, 18248
Offset: 1
-
Do[ If[ PrimeQ[ 3^n + n ], Print[ n ] ], {n, 0, 3000} ]
v={2}; Do[If[EvenQ[n]&&Mod[n, 3]!=0&&!PrimeQ[n+1]&&PrimeQ[3^n+n], v=Append[v, n]; Print[v]], {n, 3, 19000}]
Select[Range[18500],PrimeQ[3^#+#]&] (* Harvey P. Dale, Jul 23 2013 *)
-
is(n)=ispseudoprime(3^n+n) \\ Charles R Greathouse IV, May 22 2017
Showing 1-10 of 16 results.
Comments